{"title":"MMM:具有最小秘密状态的身份验证加密","authors":"Yusuke Naito, Yu Sasaki, T. Sugawara","doi":"10.46586/tches.v2023.i4.80-109","DOIUrl":null,"url":null,"abstract":"We propose a new authenticated encryption (AE) mode MMM that achieves the minimum memory size with masking. Minimizing the secret state is the crucial challenge in the low-memory AE suitable for masking. Here, the minimum secret state is s + b bits, composed of s bits for a secret key and b bits for a plaintext block. HOMA appeared in CRYPTO 2022 achieved this goal with b = 64, but choosing a smaller b was difficult because b = s/2 is bound to the block size of the underlying primitive, meaning that a block cipher with an unrealistically small block size (e.g., 8 bits) is necessary for further improvement. MMM addresses the issue by making b independent of the underlying primitive while achieving the minimum (s + b)-bit secret state. Moreover, MMM provides additional advantages over HOMA, including (i) a better rate, (ii) the security under the multi-user model, (iii) and a smaller transmission cost. We instantiate two variants, MMM-8 (with b = 8) and MMM-64 (with b = 64), using the standard tweakable block cipher SKINNY-64/192. With a (d + 1)-masking scheme, MMM-8 (resp. MMM-64) is smaller by 56d + 184 (resp. 128) bits compared with HOMA. As a result of hardware performance evaluation, MMM-8 and MMM-64 achieved smaller circuit areas than HOMA with all the examined protection orders d ∈ [0, 5]. MMM-8’s circuit area is only 81% of HOMA with d = 5, and MMM-64 achieves more than x3 speed-up with a smaller circuit area.","PeriodicalId":13186,"journal":{"name":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","volume":"138 1","pages":"80-109"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MMM: Authenticated Encryption with Minimum Secret State for Masking\",\"authors\":\"Yusuke Naito, Yu Sasaki, T. Sugawara\",\"doi\":\"10.46586/tches.v2023.i4.80-109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new authenticated encryption (AE) mode MMM that achieves the minimum memory size with masking. Minimizing the secret state is the crucial challenge in the low-memory AE suitable for masking. Here, the minimum secret state is s + b bits, composed of s bits for a secret key and b bits for a plaintext block. HOMA appeared in CRYPTO 2022 achieved this goal with b = 64, but choosing a smaller b was difficult because b = s/2 is bound to the block size of the underlying primitive, meaning that a block cipher with an unrealistically small block size (e.g., 8 bits) is necessary for further improvement. MMM addresses the issue by making b independent of the underlying primitive while achieving the minimum (s + b)-bit secret state. Moreover, MMM provides additional advantages over HOMA, including (i) a better rate, (ii) the security under the multi-user model, (iii) and a smaller transmission cost. We instantiate two variants, MMM-8 (with b = 8) and MMM-64 (with b = 64), using the standard tweakable block cipher SKINNY-64/192. With a (d + 1)-masking scheme, MMM-8 (resp. MMM-64) is smaller by 56d + 184 (resp. 128) bits compared with HOMA. As a result of hardware performance evaluation, MMM-8 and MMM-64 achieved smaller circuit areas than HOMA with all the examined protection orders d ∈ [0, 5]. MMM-8’s circuit area is only 81% of HOMA with d = 5, and MMM-64 achieves more than x3 speed-up with a smaller circuit area.\",\"PeriodicalId\":13186,\"journal\":{\"name\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"volume\":\"138 1\",\"pages\":\"80-109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46586/tches.v2023.i4.80-109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46586/tches.v2023.i4.80-109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MMM: Authenticated Encryption with Minimum Secret State for Masking
We propose a new authenticated encryption (AE) mode MMM that achieves the minimum memory size with masking. Minimizing the secret state is the crucial challenge in the low-memory AE suitable for masking. Here, the minimum secret state is s + b bits, composed of s bits for a secret key and b bits for a plaintext block. HOMA appeared in CRYPTO 2022 achieved this goal with b = 64, but choosing a smaller b was difficult because b = s/2 is bound to the block size of the underlying primitive, meaning that a block cipher with an unrealistically small block size (e.g., 8 bits) is necessary for further improvement. MMM addresses the issue by making b independent of the underlying primitive while achieving the minimum (s + b)-bit secret state. Moreover, MMM provides additional advantages over HOMA, including (i) a better rate, (ii) the security under the multi-user model, (iii) and a smaller transmission cost. We instantiate two variants, MMM-8 (with b = 8) and MMM-64 (with b = 64), using the standard tweakable block cipher SKINNY-64/192. With a (d + 1)-masking scheme, MMM-8 (resp. MMM-64) is smaller by 56d + 184 (resp. 128) bits compared with HOMA. As a result of hardware performance evaluation, MMM-8 and MMM-64 achieved smaller circuit areas than HOMA with all the examined protection orders d ∈ [0, 5]. MMM-8’s circuit area is only 81% of HOMA with d = 5, and MMM-64 achieves more than x3 speed-up with a smaller circuit area.