{"title":"概率图形模型","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0005","DOIUrl":null,"url":null,"abstract":"Statistical machine learning and statistical DSP are built on the foundations of probability theory and random variables. Different techniques encode different dependency structure between these variables. This structure leads to specific algorithms for inference and estimation. Many common dependency structures emerge naturally in this way, as a result, there are many common patterns of inference and estimation that suggest general algorithms for this purpose. So, it becomes important to formalize these algorithms; this is the purpose of this chapter. These general algorithms can often lead to substantial computational savings over more brute-force approaches, another benefit that comes from studying the structure of these models in the abstract.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic graphical models\",\"authors\":\"Max A. Little\",\"doi\":\"10.1093/oso/9780198714934.003.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical machine learning and statistical DSP are built on the foundations of probability theory and random variables. Different techniques encode different dependency structure between these variables. This structure leads to specific algorithms for inference and estimation. Many common dependency structures emerge naturally in this way, as a result, there are many common patterns of inference and estimation that suggest general algorithms for this purpose. So, it becomes important to formalize these algorithms; this is the purpose of this chapter. These general algorithms can often lead to substantial computational savings over more brute-force approaches, another benefit that comes from studying the structure of these models in the abstract.\",\"PeriodicalId\":73290,\"journal\":{\"name\":\"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198714934.003.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198714934.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计机器学习和统计DSP是建立在概率论和随机变量的基础上的。不同的技术在这些变量之间编码不同的依赖结构。这种结构导致了用于推理和估计的特定算法。许多常见的依赖关系结构以这种方式自然出现,因此,有许多常见的推理和估计模式建议用于此目的的通用算法。因此,形式化这些算法变得很重要;这就是本章的目的。这些通用算法通常可以比更暴力的方法节省大量的计算量,这是抽象地研究这些模型结构的另一个好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic graphical models
Statistical machine learning and statistical DSP are built on the foundations of probability theory and random variables. Different techniques encode different dependency structure between these variables. This structure leads to specific algorithms for inference and estimation. Many common dependency structures emerge naturally in this way, as a result, there are many common patterns of inference and estimation that suggest general algorithms for this purpose. So, it becomes important to formalize these algorithms; this is the purpose of this chapter. These general algorithms can often lead to substantial computational savings over more brute-force approaches, another benefit that comes from studying the structure of these models in the abstract.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS. CONVOLUTIONAL RECURRENT NEURAL NETWORK BASED DIRECTION OF ARRIVAL ESTIMATION METHOD USING TWO MICROPHONES FOR HEARING STUDIES. LEARNING GENERAL TRANSFORMATIONS OF DATA FOR OUT-OF-SAMPLE EXTENSIONS. Statistical modelling and inference Probabilistic graphical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1