Trong-Thuan Nguyen, Thuan Q. Nguyen, D. Vo, Vien Nguyen, Ngoc Ho, Nguyen D. Vo, Kiet Van Nguyen, Khang Nguyen
{"title":"VinaFood21:一个评估越南食物识别的新数据集","authors":"Trong-Thuan Nguyen, Thuan Q. Nguyen, D. Vo, Vien Nguyen, Ngoc Ho, Nguyen D. Vo, Kiet Van Nguyen, Khang Nguyen","doi":"10.1109/RIVF51545.2021.9642151","DOIUrl":null,"url":null,"abstract":"Vietnam is such an attractive tourist destination with its stunning and pristine landscapes and its top-rated unique food and drink. Among thousands of Vietnamese dishes, foreigners and native people are interested in easy-to-eat tastes and easy-to-do recipes, along with reasonable prices, mouthwatering flavors, and popularity. Due to the diversity and almost all the dishes have significant similarities and the lack of quality Vietnamese food datasets, it is hard to implement an auto system to classify Vietnamese food, therefore, make people easier to discover Vietnamese food. This paper introduces a new Vietnamese food dataset named VinaFood21, which consists of 13,950 images corresponding to 21 dishes. We use 10,044 images for model training and 6,682 test images to classify each food in the VinaFood21 dataset and achieved an average accuracy of 74.81% when fine-tuning CNN EfficientNet-B0.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"12 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"VinaFood21: A Novel Dataset for Evaluating Vietnamese Food Recognition\",\"authors\":\"Trong-Thuan Nguyen, Thuan Q. Nguyen, D. Vo, Vien Nguyen, Ngoc Ho, Nguyen D. Vo, Kiet Van Nguyen, Khang Nguyen\",\"doi\":\"10.1109/RIVF51545.2021.9642151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vietnam is such an attractive tourist destination with its stunning and pristine landscapes and its top-rated unique food and drink. Among thousands of Vietnamese dishes, foreigners and native people are interested in easy-to-eat tastes and easy-to-do recipes, along with reasonable prices, mouthwatering flavors, and popularity. Due to the diversity and almost all the dishes have significant similarities and the lack of quality Vietnamese food datasets, it is hard to implement an auto system to classify Vietnamese food, therefore, make people easier to discover Vietnamese food. This paper introduces a new Vietnamese food dataset named VinaFood21, which consists of 13,950 images corresponding to 21 dishes. We use 10,044 images for model training and 6,682 test images to classify each food in the VinaFood21 dataset and achieved an average accuracy of 74.81% when fine-tuning CNN EfficientNet-B0.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"12 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VinaFood21: A Novel Dataset for Evaluating Vietnamese Food Recognition
Vietnam is such an attractive tourist destination with its stunning and pristine landscapes and its top-rated unique food and drink. Among thousands of Vietnamese dishes, foreigners and native people are interested in easy-to-eat tastes and easy-to-do recipes, along with reasonable prices, mouthwatering flavors, and popularity. Due to the diversity and almost all the dishes have significant similarities and the lack of quality Vietnamese food datasets, it is hard to implement an auto system to classify Vietnamese food, therefore, make people easier to discover Vietnamese food. This paper introduces a new Vietnamese food dataset named VinaFood21, which consists of 13,950 images corresponding to 21 dishes. We use 10,044 images for model training and 6,682 test images to classify each food in the VinaFood21 dataset and achieved an average accuracy of 74.81% when fine-tuning CNN EfficientNet-B0.