{"title":"用于射频能量收集应用的微带贴片天线阵列设计","authors":"Beyza Kanboz, Merih Palandöken","doi":"10.31590/ejosat.1264433","DOIUrl":null,"url":null,"abstract":"In recent years, with the rapid developments in the field of technology and the development of wireless communication systems; led to a noticeable increase in the number of portable, rechargeable and low-power devices. These electronic devices have become a necessity even in our simplest works, due to the increase in their number and variety; It is desired that the energy needs can be met continuously and quickly at a low cost. Batteries, which are non-renewable generators, provide the energy required for such low-power devices in the world. The increase in the tendency towards non-renewable energy sources leads to negative environmental and economic consequences. Therefore, it becomes important to turn to renewable energy sources and to work on it. Energy harvesting systems, which are an innovative energy source, are the best potential alternatives to collect the energy needed by the mentioned low-power devices. With the increase of different frequency bands such as GSM 900, GSM 1800, UMTS, 3G, Wi-Fi, Wi-Max and LTE, RF energy harvesting is becoming quite common. In this paper, a printed multiband microstrip patch antenna is presented. Antenna design covers numerically calculated frequencies of 1.6dBi at 2.4GHz, 3.95dBi at 5.2GHz, gain values, and frequencies often used for electronic device communication such as Wi-Fi 2.4GHz and WiMAX. The proposed antenna design has allowable gain values to be used for RF energy harvesting applications.","PeriodicalId":12068,"journal":{"name":"European Journal of Science and Technology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstrip Patch Antenna Array Design for RF Energy Harvesting Applications\",\"authors\":\"Beyza Kanboz, Merih Palandöken\",\"doi\":\"10.31590/ejosat.1264433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the rapid developments in the field of technology and the development of wireless communication systems; led to a noticeable increase in the number of portable, rechargeable and low-power devices. These electronic devices have become a necessity even in our simplest works, due to the increase in their number and variety; It is desired that the energy needs can be met continuously and quickly at a low cost. Batteries, which are non-renewable generators, provide the energy required for such low-power devices in the world. The increase in the tendency towards non-renewable energy sources leads to negative environmental and economic consequences. Therefore, it becomes important to turn to renewable energy sources and to work on it. Energy harvesting systems, which are an innovative energy source, are the best potential alternatives to collect the energy needed by the mentioned low-power devices. With the increase of different frequency bands such as GSM 900, GSM 1800, UMTS, 3G, Wi-Fi, Wi-Max and LTE, RF energy harvesting is becoming quite common. In this paper, a printed multiband microstrip patch antenna is presented. Antenna design covers numerically calculated frequencies of 1.6dBi at 2.4GHz, 3.95dBi at 5.2GHz, gain values, and frequencies often used for electronic device communication such as Wi-Fi 2.4GHz and WiMAX. The proposed antenna design has allowable gain values to be used for RF energy harvesting applications.\",\"PeriodicalId\":12068,\"journal\":{\"name\":\"European Journal of Science and Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31590/ejosat.1264433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31590/ejosat.1264433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microstrip Patch Antenna Array Design for RF Energy Harvesting Applications
In recent years, with the rapid developments in the field of technology and the development of wireless communication systems; led to a noticeable increase in the number of portable, rechargeable and low-power devices. These electronic devices have become a necessity even in our simplest works, due to the increase in their number and variety; It is desired that the energy needs can be met continuously and quickly at a low cost. Batteries, which are non-renewable generators, provide the energy required for such low-power devices in the world. The increase in the tendency towards non-renewable energy sources leads to negative environmental and economic consequences. Therefore, it becomes important to turn to renewable energy sources and to work on it. Energy harvesting systems, which are an innovative energy source, are the best potential alternatives to collect the energy needed by the mentioned low-power devices. With the increase of different frequency bands such as GSM 900, GSM 1800, UMTS, 3G, Wi-Fi, Wi-Max and LTE, RF energy harvesting is becoming quite common. In this paper, a printed multiband microstrip patch antenna is presented. Antenna design covers numerically calculated frequencies of 1.6dBi at 2.4GHz, 3.95dBi at 5.2GHz, gain values, and frequencies often used for electronic device communication such as Wi-Fi 2.4GHz and WiMAX. The proposed antenna design has allowable gain values to be used for RF energy harvesting applications.