不同温度下KrF脉冲激光沉积碳薄膜

R. Qindeel, K. Chaudhary, M. S. Hussain, J. Ali
{"title":"不同温度下KrF脉冲激光沉积碳薄膜","authors":"R. Qindeel, K. Chaudhary, M. S. Hussain, J. Ali","doi":"10.1063/1.3586983","DOIUrl":null,"url":null,"abstract":"The preparation of carbon thin films by Pulsed Laser Deposition (PLD) has received much attention, because this method produces films which do not contain hydrogen [1] and have unusual properties such as good adherence on a variety of substrates, very high hardness, chemical inertness, low friction coefficient and electrical resistivity. It is known that the film properties strongly depend on the deposition conditions, but there have been few studies on the correlation between the deposition parameters and the growth mechanism. Two major factors which determine the film growth are the substrate temperature and the properties of the deposited energetic species which depend on laser wavelength and fluence [2, 3]. These two factors control the atom mobility on the film surface and thereby determine the physical characteristics of the deposited films such as the optical indices and microstructure. Considering the ever-decreasing dimensions of electronic devices, producing self-assembled micro- and nano-structured material systems is becoming increasingly commercially important. There is also significant academic interest in these systems, as their properties can be remarkably different from those of the bulk material due to quantum-sized effects. Since the discovery of carbon nanotubes [4], there has been a dramatic increase in the volume of research into tubular and rod-like nano- and micro-scale materials. Diamond-like carbon (DLC) films possess superb mechanical properties such as high hardness and a low friction coefficient [5]. They have diverse applications and are widely used in cutting and forming industries, especially for processing non-ferrous and particularly hard-to-machine materials.","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon thin films deposition by KrF Pulsed Laser at different temperatures\",\"authors\":\"R. Qindeel, K. Chaudhary, M. S. Hussain, J. Ali\",\"doi\":\"10.1063/1.3586983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The preparation of carbon thin films by Pulsed Laser Deposition (PLD) has received much attention, because this method produces films which do not contain hydrogen [1] and have unusual properties such as good adherence on a variety of substrates, very high hardness, chemical inertness, low friction coefficient and electrical resistivity. It is known that the film properties strongly depend on the deposition conditions, but there have been few studies on the correlation between the deposition parameters and the growth mechanism. Two major factors which determine the film growth are the substrate temperature and the properties of the deposited energetic species which depend on laser wavelength and fluence [2, 3]. These two factors control the atom mobility on the film surface and thereby determine the physical characteristics of the deposited films such as the optical indices and microstructure. Considering the ever-decreasing dimensions of electronic devices, producing self-assembled micro- and nano-structured material systems is becoming increasingly commercially important. There is also significant academic interest in these systems, as their properties can be remarkably different from those of the bulk material due to quantum-sized effects. Since the discovery of carbon nanotubes [4], there has been a dramatic increase in the volume of research into tubular and rod-like nano- and micro-scale materials. Diamond-like carbon (DLC) films possess superb mechanical properties such as high hardness and a low friction coefficient [5]. They have diverse applications and are widely used in cutting and forming industries, especially for processing non-ferrous and particularly hard-to-machine materials.\",\"PeriodicalId\":6354,\"journal\":{\"name\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.3586983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.3586983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉冲激光沉积法(PLD)制备碳薄膜受到了广泛的关注,因为这种方法制备的薄膜不含氢[1],并且具有不同寻常的性能,如在各种衬底上的粘附性好、硬度高、化学惰性、摩擦系数低和电阻率高。众所周知,薄膜的性能很大程度上取决于沉积条件,但沉积参数与生长机理之间的相关性研究很少。决定薄膜生长的两个主要因素是衬底温度和沉积的高能物质的性质,这取决于激光波长和通量[2,3]。这两个因素控制了薄膜表面原子的迁移率,从而决定了沉积薄膜的光学指数和微观结构等物理特性。考虑到电子器件的尺寸不断减小,生产自组装的微纳米结构材料系统在商业上变得越来越重要。由于量子大小的效应,这些系统的性质与块状材料的性质有很大的不同,因此也引起了学术界的极大兴趣。自碳纳米管[4]被发现以来,对管状和棒状纳米和微尺度材料的研究急剧增加。类金刚石(Diamond-like carbon, DLC)薄膜具有高硬度、低摩擦系数等优异的机械性能[5]。它们具有多种应用,广泛用于切割和成型工业,特别是加工有色金属和特别难加工的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon thin films deposition by KrF Pulsed Laser at different temperatures
The preparation of carbon thin films by Pulsed Laser Deposition (PLD) has received much attention, because this method produces films which do not contain hydrogen [1] and have unusual properties such as good adherence on a variety of substrates, very high hardness, chemical inertness, low friction coefficient and electrical resistivity. It is known that the film properties strongly depend on the deposition conditions, but there have been few studies on the correlation between the deposition parameters and the growth mechanism. Two major factors which determine the film growth are the substrate temperature and the properties of the deposited energetic species which depend on laser wavelength and fluence [2, 3]. These two factors control the atom mobility on the film surface and thereby determine the physical characteristics of the deposited films such as the optical indices and microstructure. Considering the ever-decreasing dimensions of electronic devices, producing self-assembled micro- and nano-structured material systems is becoming increasingly commercially important. There is also significant academic interest in these systems, as their properties can be remarkably different from those of the bulk material due to quantum-sized effects. Since the discovery of carbon nanotubes [4], there has been a dramatic increase in the volume of research into tubular and rod-like nano- and micro-scale materials. Diamond-like carbon (DLC) films possess superb mechanical properties such as high hardness and a low friction coefficient [5]. They have diverse applications and are widely used in cutting and forming industries, especially for processing non-ferrous and particularly hard-to-machine materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and theoretical examination of field enhancement in Au nanoparticles of SERS-active substrate for detecting rhodamine 6G Superparamagnetic core-shell nanoparticles for biomedical applications Synthesis of flower-like silver nanoparticles for SERS application I–V performances of aligned ZnO nanorods/Mg0.3Zn0.7O thin film heterojunction for MESFET applications Fabrication and application of nanofork for measuring single cells adhesion force inside ESEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1