{"title":"机器学习模型在不同土壤条件下预测土壤有机碳含量和容重的适用性","authors":"Fatemeh Hateffard, Gábor Szatmári, T. Novák","doi":"10.37501/soilsa/165879","DOIUrl":null,"url":null,"abstract":"A reliable overview of the spatial distribution of soil properties is a straightforward approach in soil policies and decision-making. Soil organic carbon (SOC) content, SOC stock and bulk density (BD) directly affect soil quality and fertility. Therefore, an accurate assessment of these crucial soil parameters is required. To do this, we used machine learning algorithms (MLAs) including, multiple linear regression (MLR), random forest (RF), arti fi cial neural network (ANN), and support vector machine (SVM) with the help of environmental covariates to predict SOC content, BD, and SOC stock. The study was conducted in two different areas, Látókép and Westsik (East Hungary), both experimental research fi elds but different from physio geographic points of view. Thirty topsoils (0–10 cm) samples were collected for each study area using conditioned Latin Hypercube Sampling strategy. Environmental covariates were extracted from a digital elevation model (DEM) and satellite images based on the representation of soil forming factors. We validated the results by randomly splitting the dataset into a train (two-third) and test (one-third) and calculated the root mean square error and R 2 . Our results showed that RF provided the most accurate spatial prediction with R 2 of about 80% for each soil property in both study areas. This study highlighted the importance of terrain attributes (including plan and pro fi le curvature, elevation and valley depth) and NDVI derived from satellite images in presenting a spatial distribution of selected soil properties in two different areas. We conclude that comparing these methods can help to determine the most accurate maps under diverse geographical conditions and heterogeneities at different scales, which can be used in precision soil quality management.","PeriodicalId":44772,"journal":{"name":"Soil Science Annual","volume":"46 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applicability of machine learning models for predicting soil organic carbon content and bulk density under different soil conditions\",\"authors\":\"Fatemeh Hateffard, Gábor Szatmári, T. Novák\",\"doi\":\"10.37501/soilsa/165879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A reliable overview of the spatial distribution of soil properties is a straightforward approach in soil policies and decision-making. Soil organic carbon (SOC) content, SOC stock and bulk density (BD) directly affect soil quality and fertility. Therefore, an accurate assessment of these crucial soil parameters is required. To do this, we used machine learning algorithms (MLAs) including, multiple linear regression (MLR), random forest (RF), arti fi cial neural network (ANN), and support vector machine (SVM) with the help of environmental covariates to predict SOC content, BD, and SOC stock. The study was conducted in two different areas, Látókép and Westsik (East Hungary), both experimental research fi elds but different from physio geographic points of view. Thirty topsoils (0–10 cm) samples were collected for each study area using conditioned Latin Hypercube Sampling strategy. Environmental covariates were extracted from a digital elevation model (DEM) and satellite images based on the representation of soil forming factors. We validated the results by randomly splitting the dataset into a train (two-third) and test (one-third) and calculated the root mean square error and R 2 . Our results showed that RF provided the most accurate spatial prediction with R 2 of about 80% for each soil property in both study areas. This study highlighted the importance of terrain attributes (including plan and pro fi le curvature, elevation and valley depth) and NDVI derived from satellite images in presenting a spatial distribution of selected soil properties in two different areas. We conclude that comparing these methods can help to determine the most accurate maps under diverse geographical conditions and heterogeneities at different scales, which can be used in precision soil quality management.\",\"PeriodicalId\":44772,\"journal\":{\"name\":\"Soil Science Annual\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Science Annual\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37501/soilsa/165879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science Annual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37501/soilsa/165879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Applicability of machine learning models for predicting soil organic carbon content and bulk density under different soil conditions
A reliable overview of the spatial distribution of soil properties is a straightforward approach in soil policies and decision-making. Soil organic carbon (SOC) content, SOC stock and bulk density (BD) directly affect soil quality and fertility. Therefore, an accurate assessment of these crucial soil parameters is required. To do this, we used machine learning algorithms (MLAs) including, multiple linear regression (MLR), random forest (RF), arti fi cial neural network (ANN), and support vector machine (SVM) with the help of environmental covariates to predict SOC content, BD, and SOC stock. The study was conducted in two different areas, Látókép and Westsik (East Hungary), both experimental research fi elds but different from physio geographic points of view. Thirty topsoils (0–10 cm) samples were collected for each study area using conditioned Latin Hypercube Sampling strategy. Environmental covariates were extracted from a digital elevation model (DEM) and satellite images based on the representation of soil forming factors. We validated the results by randomly splitting the dataset into a train (two-third) and test (one-third) and calculated the root mean square error and R 2 . Our results showed that RF provided the most accurate spatial prediction with R 2 of about 80% for each soil property in both study areas. This study highlighted the importance of terrain attributes (including plan and pro fi le curvature, elevation and valley depth) and NDVI derived from satellite images in presenting a spatial distribution of selected soil properties in two different areas. We conclude that comparing these methods can help to determine the most accurate maps under diverse geographical conditions and heterogeneities at different scales, which can be used in precision soil quality management.
期刊介绍:
Soil Science Annual journal is a continuation of the “Roczniki Gleboznawcze” – the journal of the Polish Society of Soil Science first published in 1950. Soil Science Annual is a quarterly devoted to a broad spectrum of issues relating to the soil environment. From 2012, the journal is published in the open access system by the Sciendo (De Gruyter).