工程材料的数据挖掘和机器学习方法综述

P. J. Antony, Prajna Manujesh, N. A. Jnanesh
{"title":"工程材料的数据挖掘和机器学习方法综述","authors":"P. J. Antony, Prajna Manujesh, N. A. Jnanesh","doi":"10.1109/RTEICT.2016.7807785","DOIUrl":null,"url":null,"abstract":"This review paper explores the attempts made by the numerous authors in the field of material selection. There are ample amounts of works were carried out in the field of materials engineering with data mining approaches. From the literature it is revealed that not much of the work is explored on the classification of advanced composite materials using machine learning approaches.","PeriodicalId":6527,"journal":{"name":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"11 1","pages":"69-73"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Data mining and machine learning approaches on engineering materials — A review\",\"authors\":\"P. J. Antony, Prajna Manujesh, N. A. Jnanesh\",\"doi\":\"10.1109/RTEICT.2016.7807785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper explores the attempts made by the numerous authors in the field of material selection. There are ample amounts of works were carried out in the field of materials engineering with data mining approaches. From the literature it is revealed that not much of the work is explored on the classification of advanced composite materials using machine learning approaches.\",\"PeriodicalId\":6527,\"journal\":{\"name\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"11 1\",\"pages\":\"69-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2016.7807785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2016.7807785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

这篇综述文章探讨了众多作者在材料选择领域所做的尝试。在材料工程领域有大量的工作是用数据挖掘方法进行的。从文献中可以看出,使用机器学习方法对高级复合材料进行分类的研究并不多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data mining and machine learning approaches on engineering materials — A review
This review paper explores the attempts made by the numerous authors in the field of material selection. There are ample amounts of works were carried out in the field of materials engineering with data mining approaches. From the literature it is revealed that not much of the work is explored on the classification of advanced composite materials using machine learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
I-Vector based depression level estimation technique A trust model in cloud computing based on fuzzy logic Time dispersion parameters for single bounce 2D geometrical channel including rain fading effect Information retrieval system using UNL for multilingual question answering Face recognition with CLNF for uncontrolled occlusion faces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1