纳米二氧化锆对丙烯酸基托孔隙度及白色念珠菌粘附的影响

A. Antony, H. Dipoyono, Titik Ismiyati
{"title":"纳米二氧化锆对丙烯酸基托孔隙度及白色念珠菌粘附的影响","authors":"A. Antony, H. Dipoyono, Titik Ismiyati","doi":"10.22146/majkedgiind.63382","DOIUrl":null,"url":null,"abstract":"Acrylic resin is the most common fabricated material for denture bases. ZrO2 nanoparticles can be used as filler to strengthen the physical properties and inhibit the adhesion of acrylic resins. This study aimed to examine the growth of Candida albicans and porosity in reinforced acrylic resin with Zirconium Dioxide (ZrO2) nanoparticles at 2.5% and 5% a concentration targeted for denture bases application. A laboratory experiment study included twenty-seven disc-shaped samples which were divided into three groups: group I acrylic resin without ZrO2 nanoparticles (control), group II acrylic resin with 2.5% ZrO2 nanoparticles, and group III with 5% ZrO2 nanoparticle acrylic resin. Samples were collected by heat polymerization while porosity observations were done using primo zeizs starr (Nikon YS100) microscope at 100x magnification. Dilution test was implemented to assess Candida albican growth. One-way ANOVA and Post Hoc LSD test statistical analysis were performed to evaluate the data (p<0.05). The results indicated that the mean porosity values in the control group of 2.5% and 5% were 37.4 ± 3.5, 15.8 ± 3.3, 8.0 ± 2.0 respectively while the attachment of C. albicans was 0.832 ± 0.083, 0.536 ± 0.098, 0.218 ± 0.083. One-way ANOVA confirmed a significant effect (p<0.05). Similarly, Post Hoc LSD test reported significant difference (p<0.05). The results showed that acrylic resin reinforced with ZrO2 nanoparticles for heat-polymerized denture base effectively reduced porosity and C. albicans adhesion. Five percent of ZrO2 nanoparticle concentration presented greater porosity reduction compared to 2.5% ZrO2 and non-reinforced acrylic resin. Acrylic resin reinforced with ZrO2 nanoparticles in 2.5% and 5% concentration is fungistatic.","PeriodicalId":31262,"journal":{"name":"Majalah Kedokteran Gigi Indonesia","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of adding zirconium dioxide nanoparticle to acrylic denture base on porosity and candida albicans adhesion\",\"authors\":\"A. Antony, H. Dipoyono, Titik Ismiyati\",\"doi\":\"10.22146/majkedgiind.63382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acrylic resin is the most common fabricated material for denture bases. ZrO2 nanoparticles can be used as filler to strengthen the physical properties and inhibit the adhesion of acrylic resins. This study aimed to examine the growth of Candida albicans and porosity in reinforced acrylic resin with Zirconium Dioxide (ZrO2) nanoparticles at 2.5% and 5% a concentration targeted for denture bases application. A laboratory experiment study included twenty-seven disc-shaped samples which were divided into three groups: group I acrylic resin without ZrO2 nanoparticles (control), group II acrylic resin with 2.5% ZrO2 nanoparticles, and group III with 5% ZrO2 nanoparticle acrylic resin. Samples were collected by heat polymerization while porosity observations were done using primo zeizs starr (Nikon YS100) microscope at 100x magnification. Dilution test was implemented to assess Candida albican growth. One-way ANOVA and Post Hoc LSD test statistical analysis were performed to evaluate the data (p<0.05). The results indicated that the mean porosity values in the control group of 2.5% and 5% were 37.4 ± 3.5, 15.8 ± 3.3, 8.0 ± 2.0 respectively while the attachment of C. albicans was 0.832 ± 0.083, 0.536 ± 0.098, 0.218 ± 0.083. One-way ANOVA confirmed a significant effect (p<0.05). Similarly, Post Hoc LSD test reported significant difference (p<0.05). The results showed that acrylic resin reinforced with ZrO2 nanoparticles for heat-polymerized denture base effectively reduced porosity and C. albicans adhesion. Five percent of ZrO2 nanoparticle concentration presented greater porosity reduction compared to 2.5% ZrO2 and non-reinforced acrylic resin. Acrylic resin reinforced with ZrO2 nanoparticles in 2.5% and 5% concentration is fungistatic.\",\"PeriodicalId\":31262,\"journal\":{\"name\":\"Majalah Kedokteran Gigi Indonesia\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majalah Kedokteran Gigi Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/majkedgiind.63382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Kedokteran Gigi Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/majkedgiind.63382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

丙烯酸树脂是义齿基托最常用的制造材料。ZrO2纳米颗粒可以作为填料增强丙烯酸树脂的物理性能,抑制丙烯酸树脂的粘附。本研究旨在研究二氧化锆纳米颗粒在2.5%和5%浓度下用于义齿基托的增强丙烯酸树脂中白色念珠菌的生长和孔隙率。将27个圆盘状样品分为3组:不含ZrO2纳米颗粒的丙烯酸树脂组(对照)、含2.5% ZrO2纳米颗粒的丙烯酸树脂组和含5% ZrO2纳米颗粒的丙烯酸树脂组。样品采用热聚合法收集,孔隙率观察采用100倍放大的primo zeizs starr (Nikon YS100)显微镜。稀释试验评估白色念珠菌的生长情况。采用单因素方差分析和Post Hoc LSD检验进行统计分析(p<0.05)。结果表明,2.5%和5%对照组的平均孔隙度分别为37.4±3.5、15.8±3.3、8.0±2.0,白色念珠菌的附着度分别为0.832±0.083、0.536±0.098、0.218±0.083。单因素方差分析证实了显著影响(p<0.05)。同样,Post Hoc LSD检验报告有显著性差异(p<0.05)。结果表明,ZrO2纳米颗粒增强丙烯酸树脂用于热聚合义齿基托可有效降低气孔率和白色念珠菌粘附。与2.5%的ZrO2和未增强的丙烯酸树脂相比,5%的ZrO2纳米颗粒的孔隙率降低幅度更大。2.5%和5%浓度的ZrO2纳米粒子增强丙烯酸树脂具有抑菌作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of adding zirconium dioxide nanoparticle to acrylic denture base on porosity and candida albicans adhesion
Acrylic resin is the most common fabricated material for denture bases. ZrO2 nanoparticles can be used as filler to strengthen the physical properties and inhibit the adhesion of acrylic resins. This study aimed to examine the growth of Candida albicans and porosity in reinforced acrylic resin with Zirconium Dioxide (ZrO2) nanoparticles at 2.5% and 5% a concentration targeted for denture bases application. A laboratory experiment study included twenty-seven disc-shaped samples which were divided into three groups: group I acrylic resin without ZrO2 nanoparticles (control), group II acrylic resin with 2.5% ZrO2 nanoparticles, and group III with 5% ZrO2 nanoparticle acrylic resin. Samples were collected by heat polymerization while porosity observations were done using primo zeizs starr (Nikon YS100) microscope at 100x magnification. Dilution test was implemented to assess Candida albican growth. One-way ANOVA and Post Hoc LSD test statistical analysis were performed to evaluate the data (p<0.05). The results indicated that the mean porosity values in the control group of 2.5% and 5% were 37.4 ± 3.5, 15.8 ± 3.3, 8.0 ± 2.0 respectively while the attachment of C. albicans was 0.832 ± 0.083, 0.536 ± 0.098, 0.218 ± 0.083. One-way ANOVA confirmed a significant effect (p<0.05). Similarly, Post Hoc LSD test reported significant difference (p<0.05). The results showed that acrylic resin reinforced with ZrO2 nanoparticles for heat-polymerized denture base effectively reduced porosity and C. albicans adhesion. Five percent of ZrO2 nanoparticle concentration presented greater porosity reduction compared to 2.5% ZrO2 and non-reinforced acrylic resin. Acrylic resin reinforced with ZrO2 nanoparticles in 2.5% and 5% concentration is fungistatic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
Prevalence and identification of oral candida species in patients with type 2 diabetes in Yogyakarta An Inhibition effect of immersion in effervescent garlic ethanol extract (Allium sativum L.) against Staphylococcus aureus growth on heat cured acrylic Complex aestheticss treatment of six maxillary anterior teeth with smile design and deep bite correction In vitro evaluation of coenzyme Q10 on primary fibroblast culture A potential of Jasminum sambac (L.) Aiton leaf nano-extract as spray treatment of gingivitis-induced Sprague Dawley rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1