{"title":"磷脂酰肌醇3-激酶在2-肾上腺素能刺激期间功能区隔并发Gs信号","authors":"S. Jo, V. Leblais, Ping H. Wang, M. Crow, R. Xiao","doi":"10.1161/01.RES.0000024115.67561.54","DOIUrl":null,"url":null,"abstract":"Compartmentation of intracellular signaling pathways serves as an important mechanism conferring the specificity of G protein-coupled receptor (GPCR) signaling. In the heart, stimulation of &bgr;2-adrenoceptor (&bgr;2-AR), a prototypical GPCR, activates a tightly localized protein kinase A (PKA) signaling, which regulates substrates at cell surface membranes, bypassing cytosolic target proteins (eg, phospholamban). Although a concurrent activation of &bgr;2-AR-coupled Gi proteins has been implicated in the functional compartmentation of PKA signaling, the exact mechanism underlying the restriction of the &bgr;2-AR-PKA pathway remains unclear. In the present study, we demonstrate that phosphatidylinositol 3-kinase (PI3K) plays an essential role in confining the &bgr;2-AR-PKA signaling. Inhibition of PI3K with LY294002 or wortmannin enables &bgr;2-AR-PKA signaling to reach intracellular substrates, as manifested by a robust increase in phosphorylation of phospholamban, and markedly enhances the receptor-mediated positive contractile and relaxant responses in cardiac myocytes. These potentiating effects of PI3K inhibitors are not accompanied by an increase in &bgr;2-AR-induced cAMP formation. Blocking Gi or G&bgr;&ggr; signaling with pertussis toxin or &bgr;ARK-ct, a peptide inhibitor of G&bgr;&ggr;, completely prevents the potentiating effects induced by PI3K inhibition, indicating that the pathway responsible for the functional compartmentation of &bgr;2-AR-PKA signaling sequentially involves Gi, G&bgr;&ggr;, and PI3K. Thus, PI3K constitutes a key downstream event of &bgr;2-AR-Gi signaling, which confines and negates the concurrent &bgr;2-AR/Gs-mediated PKA signaling.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"47 1","pages":"46-53"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"Phosphatidylinositol 3-Kinase Functionally Compartmentalizes the Concurrent Gs Signaling During &bgr;2-Adrenergic Stimulation\",\"authors\":\"S. Jo, V. Leblais, Ping H. Wang, M. Crow, R. Xiao\",\"doi\":\"10.1161/01.RES.0000024115.67561.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compartmentation of intracellular signaling pathways serves as an important mechanism conferring the specificity of G protein-coupled receptor (GPCR) signaling. In the heart, stimulation of &bgr;2-adrenoceptor (&bgr;2-AR), a prototypical GPCR, activates a tightly localized protein kinase A (PKA) signaling, which regulates substrates at cell surface membranes, bypassing cytosolic target proteins (eg, phospholamban). Although a concurrent activation of &bgr;2-AR-coupled Gi proteins has been implicated in the functional compartmentation of PKA signaling, the exact mechanism underlying the restriction of the &bgr;2-AR-PKA pathway remains unclear. In the present study, we demonstrate that phosphatidylinositol 3-kinase (PI3K) plays an essential role in confining the &bgr;2-AR-PKA signaling. Inhibition of PI3K with LY294002 or wortmannin enables &bgr;2-AR-PKA signaling to reach intracellular substrates, as manifested by a robust increase in phosphorylation of phospholamban, and markedly enhances the receptor-mediated positive contractile and relaxant responses in cardiac myocytes. These potentiating effects of PI3K inhibitors are not accompanied by an increase in &bgr;2-AR-induced cAMP formation. Blocking Gi or G&bgr;&ggr; signaling with pertussis toxin or &bgr;ARK-ct, a peptide inhibitor of G&bgr;&ggr;, completely prevents the potentiating effects induced by PI3K inhibition, indicating that the pathway responsible for the functional compartmentation of &bgr;2-AR-PKA signaling sequentially involves Gi, G&bgr;&ggr;, and PI3K. Thus, PI3K constitutes a key downstream event of &bgr;2-AR-Gi signaling, which confines and negates the concurrent &bgr;2-AR/Gs-mediated PKA signaling.\",\"PeriodicalId\":10314,\"journal\":{\"name\":\"Circulation Research: Journal of the American Heart Association\",\"volume\":\"47 1\",\"pages\":\"46-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation Research: Journal of the American Heart Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/01.RES.0000024115.67561.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Research: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.RES.0000024115.67561.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phosphatidylinositol 3-Kinase Functionally Compartmentalizes the Concurrent Gs Signaling During &bgr;2-Adrenergic Stimulation
Compartmentation of intracellular signaling pathways serves as an important mechanism conferring the specificity of G protein-coupled receptor (GPCR) signaling. In the heart, stimulation of &bgr;2-adrenoceptor (&bgr;2-AR), a prototypical GPCR, activates a tightly localized protein kinase A (PKA) signaling, which regulates substrates at cell surface membranes, bypassing cytosolic target proteins (eg, phospholamban). Although a concurrent activation of &bgr;2-AR-coupled Gi proteins has been implicated in the functional compartmentation of PKA signaling, the exact mechanism underlying the restriction of the &bgr;2-AR-PKA pathway remains unclear. In the present study, we demonstrate that phosphatidylinositol 3-kinase (PI3K) plays an essential role in confining the &bgr;2-AR-PKA signaling. Inhibition of PI3K with LY294002 or wortmannin enables &bgr;2-AR-PKA signaling to reach intracellular substrates, as manifested by a robust increase in phosphorylation of phospholamban, and markedly enhances the receptor-mediated positive contractile and relaxant responses in cardiac myocytes. These potentiating effects of PI3K inhibitors are not accompanied by an increase in &bgr;2-AR-induced cAMP formation. Blocking Gi or G&bgr;&ggr; signaling with pertussis toxin or &bgr;ARK-ct, a peptide inhibitor of G&bgr;&ggr;, completely prevents the potentiating effects induced by PI3K inhibition, indicating that the pathway responsible for the functional compartmentation of &bgr;2-AR-PKA signaling sequentially involves Gi, G&bgr;&ggr;, and PI3K. Thus, PI3K constitutes a key downstream event of &bgr;2-AR-Gi signaling, which confines and negates the concurrent &bgr;2-AR/Gs-mediated PKA signaling.