{"title":"10GBASE-T的MIMO THP均衡和干扰消除","authors":"Ying-Ren Chien, Yen-Ting Tu, H. Tsao, W. Mao","doi":"10.1109/SIPS.2007.4387525","DOIUrl":null,"url":null,"abstract":"Unlike 1000BASE-T system, the far-end crosstalk (FEXT) must be suppressed by at least 20 dB to meet the high speed transmission requirement for 10GBASE-T. Without FEXT cancellation, the average decision-point signal-to-noise ratio (DP-SNR) can degrade by 3 dB. This paper presents a multi-input multi-output Tomlinson-Harashima precoding (MIMO THP) technique to equalize the channel and to cancel the FEXT interference. Besides, the corresponding training method to deal with delay skew among channels and the arrangement of different step-size in least mean square (LMS) adaptive algorithm are proposed as well. Simulation results show that delay skew compensation and step-sizes arrangement can improve DP-SNR by 4.59 dB and 1.62 dB, respectively. The proposed MIMO THP architecture improves the DP-SNR by 2.75 dB than The tenative decision based approach.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"53 1","pages":"95-100"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Equalization and Interference Cancellation with MIMO THP for 10GBASE-T\",\"authors\":\"Ying-Ren Chien, Yen-Ting Tu, H. Tsao, W. Mao\",\"doi\":\"10.1109/SIPS.2007.4387525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike 1000BASE-T system, the far-end crosstalk (FEXT) must be suppressed by at least 20 dB to meet the high speed transmission requirement for 10GBASE-T. Without FEXT cancellation, the average decision-point signal-to-noise ratio (DP-SNR) can degrade by 3 dB. This paper presents a multi-input multi-output Tomlinson-Harashima precoding (MIMO THP) technique to equalize the channel and to cancel the FEXT interference. Besides, the corresponding training method to deal with delay skew among channels and the arrangement of different step-size in least mean square (LMS) adaptive algorithm are proposed as well. Simulation results show that delay skew compensation and step-sizes arrangement can improve DP-SNR by 4.59 dB and 1.62 dB, respectively. The proposed MIMO THP architecture improves the DP-SNR by 2.75 dB than The tenative decision based approach.\",\"PeriodicalId\":93225,\"journal\":{\"name\":\"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)\",\"volume\":\"53 1\",\"pages\":\"95-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2007.4387525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Equalization and Interference Cancellation with MIMO THP for 10GBASE-T
Unlike 1000BASE-T system, the far-end crosstalk (FEXT) must be suppressed by at least 20 dB to meet the high speed transmission requirement for 10GBASE-T. Without FEXT cancellation, the average decision-point signal-to-noise ratio (DP-SNR) can degrade by 3 dB. This paper presents a multi-input multi-output Tomlinson-Harashima precoding (MIMO THP) technique to equalize the channel and to cancel the FEXT interference. Besides, the corresponding training method to deal with delay skew among channels and the arrangement of different step-size in least mean square (LMS) adaptive algorithm are proposed as well. Simulation results show that delay skew compensation and step-sizes arrangement can improve DP-SNR by 4.59 dB and 1.62 dB, respectively. The proposed MIMO THP architecture improves the DP-SNR by 2.75 dB than The tenative decision based approach.