从探针数据实时检测和分类交通阻塞

Bo Xu, Tiffany Barkley, Andrew P. Lewis, Jane Macfarlane, D. Pietrobon, Matei Stroila
{"title":"从探针数据实时检测和分类交通阻塞","authors":"Bo Xu, Tiffany Barkley, Andrew P. Lewis, Jane Macfarlane, D. Pietrobon, Matei Stroila","doi":"10.1145/2996913.2996988","DOIUrl":null,"url":null,"abstract":"In this paper we present our experience on detecting and classifying traffic jams in real time from probe data. We classify traffic jams at two levels. At a higher level, we classify traffic jams into recurring and non-recurring jams. Then at a lower level we identify accidents out of non-recurring jams based on features that characterize upstream and downstream traffic patterns. Accidents are highly unpredictable and usually create heavy and long lasting congestion, and therefore are particularly worth detecting. We discuss the challenges of detecting accidents in real time as well as our approaches and results.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Real-time detection and classification of traffic jams from probe data\",\"authors\":\"Bo Xu, Tiffany Barkley, Andrew P. Lewis, Jane Macfarlane, D. Pietrobon, Matei Stroila\",\"doi\":\"10.1145/2996913.2996988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present our experience on detecting and classifying traffic jams in real time from probe data. We classify traffic jams at two levels. At a higher level, we classify traffic jams into recurring and non-recurring jams. Then at a lower level we identify accidents out of non-recurring jams based on features that characterize upstream and downstream traffic patterns. Accidents are highly unpredictable and usually create heavy and long lasting congestion, and therefore are particularly worth detecting. We discuss the challenges of detecting accidents in real time as well as our approaches and results.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了利用探测数据实时检测和分类交通阻塞的经验。我们把交通堵塞分为两级。在更高的层次上,我们把交通堵塞分为经常性和非经常性。然后,在较低的层次上,我们根据上下游交通模式的特征,从非重复性拥堵中识别事故。事故是高度不可预测的,通常会造成严重和持久的拥堵,因此特别值得注意。我们讨论了实时检测事故的挑战,以及我们的方法和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time detection and classification of traffic jams from probe data
In this paper we present our experience on detecting and classifying traffic jams in real time from probe data. We classify traffic jams at two levels. At a higher level, we classify traffic jams into recurring and non-recurring jams. Then at a lower level we identify accidents out of non-recurring jams based on features that characterize upstream and downstream traffic patterns. Accidents are highly unpredictable and usually create heavy and long lasting congestion, and therefore are particularly worth detecting. We discuss the challenges of detecting accidents in real time as well as our approaches and results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1