异构组学数据的统计集成:概率双向偏最小二乘(PO2PLS)

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Journal of the Royal Statistical Society Series C-Applied Statistics Pub Date : 2022-08-16 DOI:10.1111/rssc.12583
Said el Bouhaddani, Hae-Won Uh, Geurt Jongbloed, Jeanine Houwing-Duistermaat
{"title":"异构组学数据的统计集成:概率双向偏最小二乘(PO2PLS)","authors":"Said el Bouhaddani,&nbsp;Hae-Won Uh,&nbsp;Geurt Jongbloed,&nbsp;Jeanine Houwing-Duistermaat","doi":"10.1111/rssc.12583","DOIUrl":null,"url":null,"abstract":"<p>The availability of multi-omics data has revolutionized the life sciences by creating avenues for integrated system-level approaches. Data integration links the information across datasets to better understand the underlying biological processes. However, high dimensionality, correlations and heterogeneity pose statistical and computational challenges. We propose a general framework, probabilistic two-way partial least squares (PO2PLS), that addresses these challenges. PO2PLS models the relationship between two datasets using joint and data-specific latent variables. For maximum likelihood estimation of the parameters, we propose a novel fast EM algorithm and show that the estimator is asymptotically normally distributed. A global test for the relationship between two datasets is proposed, specifically addressing the high dimensionality, and its asymptotic distribution is derived. Notably, several existing data integration methods are special cases of PO2PLS. Via extensive simulations, we show that PO2PLS performs better than alternatives in feature selection and prediction performance. In addition, the asymptotic distribution appears to hold when the sample size is sufficiently large. We illustrate PO2PLS with two examples from commonly used study designs: a large population cohort and a small case–control study. Besides recovering known relationships, PO2PLS also identified novel findings. The methods are implemented in our R-package <i>PO2PLS</i>.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"71 5","pages":"1451-1470"},"PeriodicalIF":1.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12583","citationCount":"2","resultStr":"{\"title\":\"Statistical integration of heterogeneous omics data: Probabilistic two-way partial least squares (PO2PLS)\",\"authors\":\"Said el Bouhaddani,&nbsp;Hae-Won Uh,&nbsp;Geurt Jongbloed,&nbsp;Jeanine Houwing-Duistermaat\",\"doi\":\"10.1111/rssc.12583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The availability of multi-omics data has revolutionized the life sciences by creating avenues for integrated system-level approaches. Data integration links the information across datasets to better understand the underlying biological processes. However, high dimensionality, correlations and heterogeneity pose statistical and computational challenges. We propose a general framework, probabilistic two-way partial least squares (PO2PLS), that addresses these challenges. PO2PLS models the relationship between two datasets using joint and data-specific latent variables. For maximum likelihood estimation of the parameters, we propose a novel fast EM algorithm and show that the estimator is asymptotically normally distributed. A global test for the relationship between two datasets is proposed, specifically addressing the high dimensionality, and its asymptotic distribution is derived. Notably, several existing data integration methods are special cases of PO2PLS. Via extensive simulations, we show that PO2PLS performs better than alternatives in feature selection and prediction performance. In addition, the asymptotic distribution appears to hold when the sample size is sufficiently large. We illustrate PO2PLS with two examples from commonly used study designs: a large population cohort and a small case–control study. Besides recovering known relationships, PO2PLS also identified novel findings. The methods are implemented in our R-package <i>PO2PLS</i>.</p>\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"71 5\",\"pages\":\"1451-1470\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12583\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12583\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12583","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

多组学数据的可用性通过创建集成系统级方法的途径,彻底改变了生命科学。数据集成将跨数据集的信息链接起来,以更好地理解潜在的生物过程。然而,高维性、相关性和异质性给统计和计算带来了挑战。我们提出了一个通用框架,概率双向偏最小二乘(PO2PLS),以解决这些挑战。PO2PLS使用联合和数据特定的潜在变量对两个数据集之间的关系进行建模。对于参数的极大似然估计,我们提出了一种新的快速EM算法,并证明了估计量是渐近正态分布的。针对高维数据集之间的关系,提出了一种全局检验方法,并推导了其渐近分布。值得注意的是,现有的一些数据集成方法是PO2PLS的特殊情况。通过大量的仿真,我们证明了PO2PLS在特征选择和预测性能方面优于替代方案。此外,当样本量足够大时,渐近分布似乎成立。我们用两个常用研究设计的例子来说明PO2PLS:一个大人群队列研究和一个小病例对照研究。除了恢复已知的关系,PO2PLS还发现了新的发现。这些方法在我们的r包PO2PLS中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical integration of heterogeneous omics data: Probabilistic two-way partial least squares (PO2PLS)

The availability of multi-omics data has revolutionized the life sciences by creating avenues for integrated system-level approaches. Data integration links the information across datasets to better understand the underlying biological processes. However, high dimensionality, correlations and heterogeneity pose statistical and computational challenges. We propose a general framework, probabilistic two-way partial least squares (PO2PLS), that addresses these challenges. PO2PLS models the relationship between two datasets using joint and data-specific latent variables. For maximum likelihood estimation of the parameters, we propose a novel fast EM algorithm and show that the estimator is asymptotically normally distributed. A global test for the relationship between two datasets is proposed, specifically addressing the high dimensionality, and its asymptotic distribution is derived. Notably, several existing data integration methods are special cases of PO2PLS. Via extensive simulations, we show that PO2PLS performs better than alternatives in feature selection and prediction performance. In addition, the asymptotic distribution appears to hold when the sample size is sufficiently large. We illustrate PO2PLS with two examples from commonly used study designs: a large population cohort and a small case–control study. Besides recovering known relationships, PO2PLS also identified novel findings. The methods are implemented in our R-package PO2PLS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
期刊最新文献
tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction. Measuring the impact of new risk factors within survival models. Non-parametric Bayesian approach to multiple treatment comparisons in network meta-analysis with application to comparisons of anti-depressants. Joint modelling of survival and backwards recurrence outcomes: an analysis of factors associated with fertility treatment in the U.S. Walking fingerprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1