{"title":"金属热界面材料基础","authors":"T. Jensen, R. Lasky","doi":"10.23919/PanPacific48324.2020.9059395","DOIUrl":null,"url":null,"abstract":"Modern electronics require an extremely large number of circuits to perform their many impressive feats. For example, a modern smartphone can have several billion logic circuits in the main microprocessor. This circuit density creates a significant amount of heat that must be dissipated. If the heat is not adequately dissipated, the life expectancy and performance of the circuits are significantly reduced.","PeriodicalId":6691,"journal":{"name":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","volume":"70 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Basics of Metal Thermal Interface Materials (TIMs)\",\"authors\":\"T. Jensen, R. Lasky\",\"doi\":\"10.23919/PanPacific48324.2020.9059395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern electronics require an extremely large number of circuits to perform their many impressive feats. For example, a modern smartphone can have several billion logic circuits in the main microprocessor. This circuit density creates a significant amount of heat that must be dissipated. If the heat is not adequately dissipated, the life expectancy and performance of the circuits are significantly reduced.\",\"PeriodicalId\":6691,\"journal\":{\"name\":\"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)\",\"volume\":\"70 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/PanPacific48324.2020.9059395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PanPacific48324.2020.9059395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Basics of Metal Thermal Interface Materials (TIMs)
Modern electronics require an extremely large number of circuits to perform their many impressive feats. For example, a modern smartphone can have several billion logic circuits in the main microprocessor. This circuit density creates a significant amount of heat that must be dissipated. If the heat is not adequately dissipated, the life expectancy and performance of the circuits are significantly reduced.