T. Monteiro, Carlos Alberto Araújo, Jean Henrique dos Santos, Thiago Cardoso Silva, T. D. Nascimento, J. Conti, J. L. Matos, R. J. Klitzke, M. Pereira da Rocha
{"title":"人工智能在桉树无性系生长应力预测中的应用","authors":"T. Monteiro, Carlos Alberto Araújo, Jean Henrique dos Santos, Thiago Cardoso Silva, T. D. Nascimento, J. Conti, J. L. Matos, R. J. Klitzke, M. Pereira da Rocha","doi":"10.4067/s0718-221x2023000100430","DOIUrl":null,"url":null,"abstract":"Eucalyptus planted forests contribute to maximizing lumber production but problems such as longitudinal growth strain can negatively influence the quality of the products. Knowing dendrometric variables and wood properties can help in the prediction of longitudinal growth strain, mainly with the help of artificial intelli - gence. Thus, the aim of this research was to evaluate the use of artificial neural networks to predict longitudinal growth strain in Eucalyptus trees based on dendrometric variables, spacing between trees and wood density. The longitudinal growth strain was measured in trees of four Eucalyptus clones planted in three spacings. The diameter and height of each tree were measured. The basic wood density was determined. Artificial neural","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":"161 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence to growth stresses predicting in Eucalyptus clones using dendrometric variables and wood density\",\"authors\":\"T. Monteiro, Carlos Alberto Araújo, Jean Henrique dos Santos, Thiago Cardoso Silva, T. D. Nascimento, J. Conti, J. L. Matos, R. J. Klitzke, M. Pereira da Rocha\",\"doi\":\"10.4067/s0718-221x2023000100430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eucalyptus planted forests contribute to maximizing lumber production but problems such as longitudinal growth strain can negatively influence the quality of the products. Knowing dendrometric variables and wood properties can help in the prediction of longitudinal growth strain, mainly with the help of artificial intelli - gence. Thus, the aim of this research was to evaluate the use of artificial neural networks to predict longitudinal growth strain in Eucalyptus trees based on dendrometric variables, spacing between trees and wood density. The longitudinal growth strain was measured in trees of four Eucalyptus clones planted in three spacings. The diameter and height of each tree were measured. The basic wood density was determined. Artificial neural\",\"PeriodicalId\":18092,\"journal\":{\"name\":\"Maderas-ciencia Y Tecnologia\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maderas-ciencia Y Tecnologia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4067/s0718-221x2023000100430\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/s0718-221x2023000100430","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Artificial intelligence to growth stresses predicting in Eucalyptus clones using dendrometric variables and wood density
Eucalyptus planted forests contribute to maximizing lumber production but problems such as longitudinal growth strain can negatively influence the quality of the products. Knowing dendrometric variables and wood properties can help in the prediction of longitudinal growth strain, mainly with the help of artificial intelli - gence. Thus, the aim of this research was to evaluate the use of artificial neural networks to predict longitudinal growth strain in Eucalyptus trees based on dendrometric variables, spacing between trees and wood density. The longitudinal growth strain was measured in trees of four Eucalyptus clones planted in three spacings. The diameter and height of each tree were measured. The basic wood density was determined. Artificial neural
期刊介绍:
Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.