纤维- FISH的显微和图像分析

H. Vrolijk, R. Florijn, F. M. Rijke, G. V. Ommen, J. D. Dunnen, A. Raap, H. Tanke
{"title":"纤维- FISH的显微和图像分析","authors":"H. Vrolijk, R. Florijn, F. M. Rijke, G. V. Ommen, J. D. Dunnen, A. Raap, H. Tanke","doi":"10.1002/1361-6374(199606)4:2<84::AID-BIO6>3.0.CO;2-8","DOIUrl":null,"url":null,"abstract":"In this paper the aspects of image acquisition, processing and analysis for DNA-fibre mapping are described. As the nature and the quality of the fibre-FISH signals (given its resolution range of 1–500 kb) may vary to a great extent, an interactive approach was chosen for the selection and analysis of the fibres. The accuracy of this fibre-FISH mapping approach was compared with restriction mapping on the basis of a map of seven cosmid contigs from the thyroglobulin gene, which spans about 300 kb. The results were in full agreement with restriction mapping. Standard errors for sizes of the cosmids, gaps, and overlaps were obtained between 2.0 and 6.2 kb. By alternately labelling the clones of the DNA map a colour barcode can be composed which eases the identification of gene rearrangements, as is illustrated on two patients with a deletion in the Duchenne muscular dystrophy (DMD) gene. The time needed for straightening a fibre and defining the distances between the different cosmids is dominated by the amount of human interaction and typically takes 1–2 min. From this study it is clear that fibre-FISH analysis is well suited for mapping cosmid contigs and defining breakpoints in patient material with the same or better accuracy as restriction mapping and PCR analysis.","PeriodicalId":100176,"journal":{"name":"Bioimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Microscopy and image analysis of fibre‐FISH\",\"authors\":\"H. Vrolijk, R. Florijn, F. M. Rijke, G. V. Ommen, J. D. Dunnen, A. Raap, H. Tanke\",\"doi\":\"10.1002/1361-6374(199606)4:2<84::AID-BIO6>3.0.CO;2-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the aspects of image acquisition, processing and analysis for DNA-fibre mapping are described. As the nature and the quality of the fibre-FISH signals (given its resolution range of 1–500 kb) may vary to a great extent, an interactive approach was chosen for the selection and analysis of the fibres. The accuracy of this fibre-FISH mapping approach was compared with restriction mapping on the basis of a map of seven cosmid contigs from the thyroglobulin gene, which spans about 300 kb. The results were in full agreement with restriction mapping. Standard errors for sizes of the cosmids, gaps, and overlaps were obtained between 2.0 and 6.2 kb. By alternately labelling the clones of the DNA map a colour barcode can be composed which eases the identification of gene rearrangements, as is illustrated on two patients with a deletion in the Duchenne muscular dystrophy (DMD) gene. The time needed for straightening a fibre and defining the distances between the different cosmids is dominated by the amount of human interaction and typically takes 1–2 min. From this study it is clear that fibre-FISH analysis is well suited for mapping cosmid contigs and defining breakpoints in patient material with the same or better accuracy as restriction mapping and PCR analysis.\",\"PeriodicalId\":100176,\"journal\":{\"name\":\"Bioimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1361-6374(199606)4:2<84::AID-BIO6>3.0.CO;2-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1361-6374(199606)4:2<84::AID-BIO6>3.0.CO;2-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文对dna纤维图谱的图像采集、处理和分析等方面进行了阐述。由于光纤- fish信号的性质和质量(给定其分辨率范围为1-500 kb)可能在很大程度上变化,因此选择了一种交互式方法来选择和分析光纤。基于甲状腺球蛋白基因的7个cosmid序列的图谱,我们比较了这种纤维- fish定位方法与限制性内切定位方法的准确性。结果与限制映射完全一致。宇宙线、间隙和重叠的大小的标准误差在2.0到6.2 kb之间。通过交替标记DNA图谱的克隆,可以组成彩色条形码,从而简化基因重排的识别,正如两个杜氏肌营养不良症(DMD)基因缺失的患者所示。拉直纤维和确定不同cosmid之间距离所需的时间由人类相互作用的数量决定,通常需要1-2分钟。从本研究中可以清楚地看出,纤维- fish分析非常适合于绘制cosmid组和确定患者材料中的断点,其准确性与限制性基因图谱和PCR分析相同或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microscopy and image analysis of fibre‐FISH
In this paper the aspects of image acquisition, processing and analysis for DNA-fibre mapping are described. As the nature and the quality of the fibre-FISH signals (given its resolution range of 1–500 kb) may vary to a great extent, an interactive approach was chosen for the selection and analysis of the fibres. The accuracy of this fibre-FISH mapping approach was compared with restriction mapping on the basis of a map of seven cosmid contigs from the thyroglobulin gene, which spans about 300 kb. The results were in full agreement with restriction mapping. Standard errors for sizes of the cosmids, gaps, and overlaps were obtained between 2.0 and 6.2 kb. By alternately labelling the clones of the DNA map a colour barcode can be composed which eases the identification of gene rearrangements, as is illustrated on two patients with a deletion in the Duchenne muscular dystrophy (DMD) gene. The time needed for straightening a fibre and defining the distances between the different cosmids is dominated by the amount of human interaction and typically takes 1–2 min. From this study it is clear that fibre-FISH analysis is well suited for mapping cosmid contigs and defining breakpoints in patient material with the same or better accuracy as restriction mapping and PCR analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Magnetic Particle Imaging Magnetic Resonance Imaging Quantitative evaluation of light microscopes based on image processing techniques Confocal microscopy of single molecules of the green fluorescent protein Heavy metal contrast enhancement for the selective detection of gold particles in electron microscopical sections using electron spectroscopic imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1