x射线辐照和摩擦对绝缘子性能的影响

A. Berroung, S. Fayeulle, B. Hamzaoui, D. Tréheux, C. Gressus
{"title":"x射线辐照和摩擦对绝缘子性能的影响","authors":"A. Berroung, S. Fayeulle, B. Hamzaoui, D. Tréheux, C. Gressus","doi":"10.1109/14.231535","DOIUrl":null,"url":null,"abstract":"The study of ceramics is tackled from the space-charge physics point of view. The role of the polarization and relaxation mechanisms is demonstrated for friction coefficient and wear, as well as for breakdown voltage; therefore these characteristics depend on the permittivity. This result is based on experiments performed with pure or X-irradiated single crystal alumina (sapphire) or polycrystalline alumina. A method called the mirror method is presented, in which the possibility of creating trapped electrical charges in a given material is measured using the electron beam of a scanning electron microscope. This method is based on the fact that X-ray irradiation changes permittivity, Young modulus, and charging properties. Therefore, when a dielectric material is under irradiation, the trap and the bond energies will be modified and consequently changes in electrical and mechanical properties of the material are expected. It is shown that these changes can modify both irradiated and nonirradiated areas. >","PeriodicalId":13105,"journal":{"name":"IEEE Transactions on Electrical Insulation","volume":"68 1","pages":"528-534"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Effect of X-irradiation and friction on the properties of insulators\",\"authors\":\"A. Berroung, S. Fayeulle, B. Hamzaoui, D. Tréheux, C. Gressus\",\"doi\":\"10.1109/14.231535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of ceramics is tackled from the space-charge physics point of view. The role of the polarization and relaxation mechanisms is demonstrated for friction coefficient and wear, as well as for breakdown voltage; therefore these characteristics depend on the permittivity. This result is based on experiments performed with pure or X-irradiated single crystal alumina (sapphire) or polycrystalline alumina. A method called the mirror method is presented, in which the possibility of creating trapped electrical charges in a given material is measured using the electron beam of a scanning electron microscope. This method is based on the fact that X-ray irradiation changes permittivity, Young modulus, and charging properties. Therefore, when a dielectric material is under irradiation, the trap and the bond energies will be modified and consequently changes in electrical and mechanical properties of the material are expected. It is shown that these changes can modify both irradiated and nonirradiated areas. >\",\"PeriodicalId\":13105,\"journal\":{\"name\":\"IEEE Transactions on Electrical Insulation\",\"volume\":\"68 1\",\"pages\":\"528-534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electrical Insulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/14.231535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electrical Insulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/14.231535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

从空间电荷物理学的角度来研究陶瓷。极化和弛豫机制对摩擦系数和磨损以及击穿电压的作用得到了证明;因此这些特性取决于介电常数。这个结果是基于用纯或x射线辐照的单晶氧化铝(蓝宝石)或多晶氧化铝进行的实验。提出了一种称为镜像法的方法,该方法利用扫描电子显微镜的电子束来测量给定材料中产生捕获电荷的可能性。这种方法是基于x射线辐照改变介电常数、杨氏模量和充电特性的事实。因此,当介电材料受到辐照时,其俘获能和键能将被改变,因此材料的电气和机械性能将发生变化。结果表明,这些变化可以改变辐照区和未辐照区。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of X-irradiation and friction on the properties of insulators
The study of ceramics is tackled from the space-charge physics point of view. The role of the polarization and relaxation mechanisms is demonstrated for friction coefficient and wear, as well as for breakdown voltage; therefore these characteristics depend on the permittivity. This result is based on experiments performed with pure or X-irradiated single crystal alumina (sapphire) or polycrystalline alumina. A method called the mirror method is presented, in which the possibility of creating trapped electrical charges in a given material is measured using the electron beam of a scanning electron microscope. This method is based on the fact that X-ray irradiation changes permittivity, Young modulus, and charging properties. Therefore, when a dielectric material is under irradiation, the trap and the bond energies will be modified and consequently changes in electrical and mechanical properties of the material are expected. It is shown that these changes can modify both irradiated and nonirradiated areas. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The effect of the definition used in measuring partial discharge inception voltages Detection and location of internal defects in the insulation of power transformers The definitions used for partial discharge phenomena The relation between thermal and electrical stress and the PD behavior of epoxy-resin transformers Digital measurement of partial discharges in full-sized power capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1