脑老化的分子学习和记忆

Q3 Pharmacology, Toxicology and Pharmaceutics Biomedical and Pharmacology Journal Pub Date : 2023-06-30 DOI:10.13005/bpj/2651
H. F. Poon, Jun Yuan, Wayne Xu, Alan F Wu, H. Yu
{"title":"脑老化的分子学习和记忆","authors":"H. F. Poon, Jun Yuan, Wayne Xu, Alan F Wu, H. Yu","doi":"10.13005/bpj/2651","DOIUrl":null,"url":null,"abstract":"This chapter discusses the molecular basis of learning and memory, specifically the Hebbian theory, which suggests that coincident activation of pre- and postsynaptic neurons leads to modifications in synaptic efficacy, creating associative links between the neurons. Memories are stored as alterations of these synaptic changes. The chapter will also discuss three basic assumptions regarding the neurochemical basis of learning and memory, including the requirement for protein synthesis for long-term memory formation, and the storage of memory in synaptic connections. The passage also discusses long-term potentiation (LTP) as the most frequently studied cellular basis of learning and memory in vertebrates, including its properties such as state-dependence, input specificity, and associativity. LTP is considered an analog of memory since it is a long-lasting alteration in neuronal function that results from a brief period of stimulus.","PeriodicalId":9054,"journal":{"name":"Biomedical and Pharmacology Journal","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Learning and Memory of Brain Aging\",\"authors\":\"H. F. Poon, Jun Yuan, Wayne Xu, Alan F Wu, H. Yu\",\"doi\":\"10.13005/bpj/2651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter discusses the molecular basis of learning and memory, specifically the Hebbian theory, which suggests that coincident activation of pre- and postsynaptic neurons leads to modifications in synaptic efficacy, creating associative links between the neurons. Memories are stored as alterations of these synaptic changes. The chapter will also discuss three basic assumptions regarding the neurochemical basis of learning and memory, including the requirement for protein synthesis for long-term memory formation, and the storage of memory in synaptic connections. The passage also discusses long-term potentiation (LTP) as the most frequently studied cellular basis of learning and memory in vertebrates, including its properties such as state-dependence, input specificity, and associativity. LTP is considered an analog of memory since it is a long-lasting alteration in neuronal function that results from a brief period of stimulus.\",\"PeriodicalId\":9054,\"journal\":{\"name\":\"Biomedical and Pharmacology Journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical and Pharmacology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/bpj/2651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Pharmacology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/bpj/2651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

本章讨论了学习和记忆的分子基础,特别是Hebbian理论,该理论认为突触前和突触后神经元的同时激活会导致突触效能的改变,从而在神经元之间建立联想联系。记忆被储存为这些突触变化的变化。本章还将讨论关于学习和记忆的神经化学基础的三个基本假设,包括长期记忆形成对蛋白质合成的要求,以及突触连接中记忆的存储。本文还讨论了长期增强(LTP)作为脊椎动物学习和记忆的最常见的细胞基础,包括其状态依赖性、输入特异性和联想性等特性。LTP被认为是记忆的一种模拟,因为它是由短暂的刺激引起的神经元功能的长期改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Learning and Memory of Brain Aging
This chapter discusses the molecular basis of learning and memory, specifically the Hebbian theory, which suggests that coincident activation of pre- and postsynaptic neurons leads to modifications in synaptic efficacy, creating associative links between the neurons. Memories are stored as alterations of these synaptic changes. The chapter will also discuss three basic assumptions regarding the neurochemical basis of learning and memory, including the requirement for protein synthesis for long-term memory formation, and the storage of memory in synaptic connections. The passage also discusses long-term potentiation (LTP) as the most frequently studied cellular basis of learning and memory in vertebrates, including its properties such as state-dependence, input specificity, and associativity. LTP is considered an analog of memory since it is a long-lasting alteration in neuronal function that results from a brief period of stimulus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical and Pharmacology Journal
Biomedical and Pharmacology Journal Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
1.20
自引率
0.00%
发文量
189
期刊介绍: Biomedical and Pharmacology Journal (BPJ) is an International Peer Reviewed Research Journal in English language whose frequency is quarterly. The journal seeks to promote research, exchange of scientific information, consideration of regulatory mechanisms that affect drug development and utilization, and medical education. BPJ take much care in making your article published without much delay with your kind cooperation and support. Research papers, review articles, short communications, news are welcomed provided they demonstrate new findings of relevance to the field as a whole. All articles will be peer-reviewed and will find a place in Biomedical and Pharmacology Journal based on the merit and innovativeness of the research work. BPJ hopes that Researchers, Research scholars, Academician, Industrialists etc. would make use of this journal for the development of science and technology. Topics of interest include, but are not limited to: Biochemistry Genetics Microbiology and virology Molecular, cellular and cancer biology Neurosciences Pharmacology Drug Discovery Cardiovascular Pharmacology Neuropharmacology Molecular & Cellular Mechanisms Immunology & Inflammation Pharmacy.
期刊最新文献
A Comparison of the Recovery Profile of Dexmedetomidine When Administered by Different Routes in Patients Undergoing Laparoscopic Cholecystectomy – A Randomized Controlled Trial Health Literacy in People Living with Human Immunodeficiency Virus Infection: A Narrative Review Targeted Pharmaceutical Analysis of Antibiotic Use by Risk Criteria in Patients Hospitalized in the Infectious and Tropical Diseases Department at Treichville Teaching Hospital (Abidjan, Côte d'Ivoire) Hybrid Model: Deep Learning method for Early Detection of Alzheimer’s disease from MRI images Autologous Platelet-Rich Plasma: A Potential Therapy to Mitigate Severe Covid-19 Manifestations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1