J. Chatterjee, A. Shajahan, Shailendra Pratap, S. Gupta
{"title":"颗粒活性炭与砂作为水过滤介质的比较研究及模型参数的估计","authors":"J. Chatterjee, A. Shajahan, Shailendra Pratap, S. Gupta","doi":"10.12989/AER.2017.6.1.035","DOIUrl":null,"url":null,"abstract":"The use of Granular Activated Carbon (GAC) and naturally occurring silica (Sand) as filtration media in water and waste water treatment systems is very common. While GAC offers the additional functionality of being an “adsorptive” filter for dissolved organics it is also more expensive. In this paper we present an experimental evaluation of the performance of a bed of GAC for colloid removal and compare the same with that from an equivalent bed of Sand. The experiments are performed in an “intermittent” manner over extended time, to “simulate” performance over the life of the filter bed. The experiments were continued till a significant drop in water flow rate through the bed was observed. A novel “deposition” and “detachment” rate based transient mathematical model is developed. It is observed that the data from the experiments can be explained by the above model, for different aqueous phase electrolyte concentrations. The model “parameters”, namely the “deposition” and “detachment” rates are evaluated for the 2 filter media studied. The model suggests that the significantly better performance of GAC in colloid filtration is probably due to significantly lower detachment of colloids from the same. While the “deposition” rates are higher for GAC, the “detachment” rates are significantly lower, which makes GAC more effective than sand for colloid removal by over an order of magnitude.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"39 1","pages":"35-51"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of granular activated carbon and sand as water filtration media with estimation of model parameters\",\"authors\":\"J. Chatterjee, A. Shajahan, Shailendra Pratap, S. Gupta\",\"doi\":\"10.12989/AER.2017.6.1.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Granular Activated Carbon (GAC) and naturally occurring silica (Sand) as filtration media in water and waste water treatment systems is very common. While GAC offers the additional functionality of being an “adsorptive” filter for dissolved organics it is also more expensive. In this paper we present an experimental evaluation of the performance of a bed of GAC for colloid removal and compare the same with that from an equivalent bed of Sand. The experiments are performed in an “intermittent” manner over extended time, to “simulate” performance over the life of the filter bed. The experiments were continued till a significant drop in water flow rate through the bed was observed. A novel “deposition” and “detachment” rate based transient mathematical model is developed. It is observed that the data from the experiments can be explained by the above model, for different aqueous phase electrolyte concentrations. The model “parameters”, namely the “deposition” and “detachment” rates are evaluated for the 2 filter media studied. The model suggests that the significantly better performance of GAC in colloid filtration is probably due to significantly lower detachment of colloids from the same. While the “deposition” rates are higher for GAC, the “detachment” rates are significantly lower, which makes GAC more effective than sand for colloid removal by over an order of magnitude.\",\"PeriodicalId\":7287,\"journal\":{\"name\":\"Advances in Environmental Research\",\"volume\":\"39 1\",\"pages\":\"35-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Environmental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/AER.2017.6.1.035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/AER.2017.6.1.035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative study of granular activated carbon and sand as water filtration media with estimation of model parameters
The use of Granular Activated Carbon (GAC) and naturally occurring silica (Sand) as filtration media in water and waste water treatment systems is very common. While GAC offers the additional functionality of being an “adsorptive” filter for dissolved organics it is also more expensive. In this paper we present an experimental evaluation of the performance of a bed of GAC for colloid removal and compare the same with that from an equivalent bed of Sand. The experiments are performed in an “intermittent” manner over extended time, to “simulate” performance over the life of the filter bed. The experiments were continued till a significant drop in water flow rate through the bed was observed. A novel “deposition” and “detachment” rate based transient mathematical model is developed. It is observed that the data from the experiments can be explained by the above model, for different aqueous phase electrolyte concentrations. The model “parameters”, namely the “deposition” and “detachment” rates are evaluated for the 2 filter media studied. The model suggests that the significantly better performance of GAC in colloid filtration is probably due to significantly lower detachment of colloids from the same. While the “deposition” rates are higher for GAC, the “detachment” rates are significantly lower, which makes GAC more effective than sand for colloid removal by over an order of magnitude.