{"title":"HinH2O在小型模块堆中热中子散射截面的初步研究","authors":"Jun Wu, Yixue Chen","doi":"10.3390/jne4020023","DOIUrl":null,"url":null,"abstract":"Neutron thermalization leads to the complexity of the scattering cross-section calculation, which influences the accuracy of the neutron transport calculation in the thermal energy range. The higher precision of thermal scattering data is demanded in the small modular reactors (SMRs) design, especially for small-sized PWRs and SCWRs. Additionally, the thermal neutron scattering problems in supercritical water have not yet been solved. In this study, the thermal neutron scattering problems in subcritical water are tested. Based on thermal neutron scattering theory, the GA model and IKE model were analyzed. This work selected the corresponding input parameters, such as the frequency spectrum, the discrete oscillator energy, weight parameters and so on, as well as preliminary studies on how to calculate the thermal scattering data for HinH2O to accomplish the calculation at various temperatures by developing LIPER code. The deviation between the calculated and reference results, which were both obtained by the Monte Carlo code, COSRMC, was below 0.2 pcm. The deviation of the scattering cross-section between the calculation results and reference was below 0.1%, indicating the reasonability of this study’s thermal scattering data calculation.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":"108 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary Study on the Thermal Neutron Scattering Cross-Section for HinH2O in Small Modular Reactors\",\"authors\":\"Jun Wu, Yixue Chen\",\"doi\":\"10.3390/jne4020023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutron thermalization leads to the complexity of the scattering cross-section calculation, which influences the accuracy of the neutron transport calculation in the thermal energy range. The higher precision of thermal scattering data is demanded in the small modular reactors (SMRs) design, especially for small-sized PWRs and SCWRs. Additionally, the thermal neutron scattering problems in supercritical water have not yet been solved. In this study, the thermal neutron scattering problems in subcritical water are tested. Based on thermal neutron scattering theory, the GA model and IKE model were analyzed. This work selected the corresponding input parameters, such as the frequency spectrum, the discrete oscillator energy, weight parameters and so on, as well as preliminary studies on how to calculate the thermal scattering data for HinH2O to accomplish the calculation at various temperatures by developing LIPER code. The deviation between the calculated and reference results, which were both obtained by the Monte Carlo code, COSRMC, was below 0.2 pcm. The deviation of the scattering cross-section between the calculation results and reference was below 0.1%, indicating the reasonability of this study’s thermal scattering data calculation.\",\"PeriodicalId\":16756,\"journal\":{\"name\":\"Journal of Nuclear Engineering and Radiation Science\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Engineering and Radiation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jne4020023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jne4020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Preliminary Study on the Thermal Neutron Scattering Cross-Section for HinH2O in Small Modular Reactors
Neutron thermalization leads to the complexity of the scattering cross-section calculation, which influences the accuracy of the neutron transport calculation in the thermal energy range. The higher precision of thermal scattering data is demanded in the small modular reactors (SMRs) design, especially for small-sized PWRs and SCWRs. Additionally, the thermal neutron scattering problems in supercritical water have not yet been solved. In this study, the thermal neutron scattering problems in subcritical water are tested. Based on thermal neutron scattering theory, the GA model and IKE model were analyzed. This work selected the corresponding input parameters, such as the frequency spectrum, the discrete oscillator energy, weight parameters and so on, as well as preliminary studies on how to calculate the thermal scattering data for HinH2O to accomplish the calculation at various temperatures by developing LIPER code. The deviation between the calculated and reference results, which were both obtained by the Monte Carlo code, COSRMC, was below 0.2 pcm. The deviation of the scattering cross-section between the calculation results and reference was below 0.1%, indicating the reasonability of this study’s thermal scattering data calculation.
期刊介绍:
The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.