自动机载激光扫描数据质量控制程序环境研究

Q3 Agricultural and Biological Sciences Folia Forestalia Polonica, Series A Pub Date : 2020-12-01 DOI:10.2478/ffp-2020-0030
Bartłomiej Kraszewski, Z. Piasecka, Rafal Sadkowski, K. Stereńczak
{"title":"自动机载激光扫描数据质量控制程序环境研究","authors":"Bartłomiej Kraszewski, Z. Piasecka, Rafal Sadkowski, K. Stereńczak","doi":"10.2478/ffp-2020-0030","DOIUrl":null,"url":null,"abstract":"Abstract Airborne laser scanning (ALS) technology delivers large amount of data collected from airborne level. These data are used for many different applications in forestry, civil engineering, environmental studies and others. To acquire the best possible results from the data, accuracy analysis is a necessary part of data processing chain. Therefore, considering the increasing interest worldwide in the use of laser scanning data, improving the quality control (QC) tools is a crucial pursuit. This study underlines the possible error sources, summarises the existing QC knowledge for ALS data and proposes an optimised QC procedure. The procedure was implemented in selected applications and evaluated for three different environments, namely, forests, rural areas and croplands. The proposed solution is almost fully automatic outside from the module that supports the operator in the classification examination. The workflow is scalable and can be expanded with new modules that enhance the functionality. The presented procedures can save up to 30 min of manual checks for every 1 km2 area.","PeriodicalId":35789,"journal":{"name":"Folia Forestalia Polonica, Series A","volume":"120 1","pages":"317 - 326"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Airborne Laser Scanning Data Quality Control Procedure for Environmental Studies\",\"authors\":\"Bartłomiej Kraszewski, Z. Piasecka, Rafal Sadkowski, K. Stereńczak\",\"doi\":\"10.2478/ffp-2020-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Airborne laser scanning (ALS) technology delivers large amount of data collected from airborne level. These data are used for many different applications in forestry, civil engineering, environmental studies and others. To acquire the best possible results from the data, accuracy analysis is a necessary part of data processing chain. Therefore, considering the increasing interest worldwide in the use of laser scanning data, improving the quality control (QC) tools is a crucial pursuit. This study underlines the possible error sources, summarises the existing QC knowledge for ALS data and proposes an optimised QC procedure. The procedure was implemented in selected applications and evaluated for three different environments, namely, forests, rural areas and croplands. The proposed solution is almost fully automatic outside from the module that supports the operator in the classification examination. The workflow is scalable and can be expanded with new modules that enhance the functionality. The presented procedures can save up to 30 min of manual checks for every 1 km2 area.\",\"PeriodicalId\":35789,\"journal\":{\"name\":\"Folia Forestalia Polonica, Series A\",\"volume\":\"120 1\",\"pages\":\"317 - 326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Forestalia Polonica, Series A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ffp-2020-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Forestalia Polonica, Series A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ffp-2020-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

机载激光扫描(机载激光扫描)技术提供了从机载水平采集的大量数据。这些数据用于林业、土木工程、环境研究和其他领域的许多不同应用。为了从数据中获得尽可能好的结果,精度分析是数据处理链中必不可少的一环。因此,考虑到全世界对使用激光扫描数据的兴趣日益增加,改进质量控制(QC)工具是一个至关重要的追求。本研究强调了可能的误差来源,总结了ALS数据的现有QC知识,并提出了优化的QC程序。该程序在选定的应用中执行,并对三种不同的环境,即森林、农村地区和农田进行了评价。所提出的解决方案在支持操作员进行分类检查的模块之外几乎是全自动的。工作流是可伸缩的,可以使用增强功能的新模块进行扩展。所提出的程序可以为每1平方公里区域节省30分钟的人工检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Airborne Laser Scanning Data Quality Control Procedure for Environmental Studies
Abstract Airborne laser scanning (ALS) technology delivers large amount of data collected from airborne level. These data are used for many different applications in forestry, civil engineering, environmental studies and others. To acquire the best possible results from the data, accuracy analysis is a necessary part of data processing chain. Therefore, considering the increasing interest worldwide in the use of laser scanning data, improving the quality control (QC) tools is a crucial pursuit. This study underlines the possible error sources, summarises the existing QC knowledge for ALS data and proposes an optimised QC procedure. The procedure was implemented in selected applications and evaluated for three different environments, namely, forests, rural areas and croplands. The proposed solution is almost fully automatic outside from the module that supports the operator in the classification examination. The workflow is scalable and can be expanded with new modules that enhance the functionality. The presented procedures can save up to 30 min of manual checks for every 1 km2 area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia Forestalia Polonica, Series A
Folia Forestalia Polonica, Series A Agricultural and Biological Sciences-Forestry
CiteScore
1.30
自引率
0.00%
发文量
18
审稿时长
8 weeks
期刊介绍: FOLIA FORESTALIA POLONICA, SERIES A – FORESTRY is a forest science magazine addressed to scientists, administrators and policy-makers in forestry, agroforestry, ecology, environment and resource management. The language of publication is English and papers from any region of the world are welcome.
期刊最新文献
Seasonal variation in nutrient composition in the leaves of two Bauhinia species What affects the choice of forestry profession by Ukrainian students? Approaches to research and classification of forest fuel Scots pine stands in the Left-Bank Forest-Steppe of Ukraine GIS analyses of land consolidation in case of the highly fragmentated of parcels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1