一种基于信息测量的太赫兹图像隐藏目标检测技术

D. Murashov, A. Morozov, F. D. Murashov
{"title":"一种基于信息测量的太赫兹图像隐藏目标检测技术","authors":"D. Murashov, A. Morozov, F. D. Murashov","doi":"10.18287/1613-0073-2019-2391-269-274","DOIUrl":null,"url":null,"abstract":"In this paper, a new technique for detecting concealed objects in the images acquired by a passive THz imaging system is proposed. The technique is based on a method for mutual information maximization successfully used for image matching. For reducing computational expenses, we propose to analyze the mutual information at local maxima of the crosscorrelation function computed in the Fourier domain. The proposed technique does not require parameter tuning. A computing experiment approved the efficiency of the proposed technique and the possibility of its implementation in security systems.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A technique for detecting concealed objects in terahertz images based on information measure\",\"authors\":\"D. Murashov, A. Morozov, F. D. Murashov\",\"doi\":\"10.18287/1613-0073-2019-2391-269-274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new technique for detecting concealed objects in the images acquired by a passive THz imaging system is proposed. The technique is based on a method for mutual information maximization successfully used for image matching. For reducing computational expenses, we propose to analyze the mutual information at local maxima of the crosscorrelation function computed in the Fourier domain. The proposed technique does not require parameter tuning. A computing experiment approved the efficiency of the proposed technique and the possibility of its implementation in security systems.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2391-269-274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-269-274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种被动太赫兹成像系统图像中隐藏目标的检测新技术。该技术基于一种互信息最大化的方法,该方法已成功地用于图像匹配。为了减少计算费用,我们建议分析在傅里叶域中计算的互相关函数的局部最大值处的互信息。所提出的技术不需要参数调优。计算实验证明了该方法的有效性和在安全系统中实现的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A technique for detecting concealed objects in terahertz images based on information measure
In this paper, a new technique for detecting concealed objects in the images acquired by a passive THz imaging system is proposed. The technique is based on a method for mutual information maximization successfully used for image matching. For reducing computational expenses, we propose to analyze the mutual information at local maxima of the crosscorrelation function computed in the Fourier domain. The proposed technique does not require parameter tuning. A computing experiment approved the efficiency of the proposed technique and the possibility of its implementation in security systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1