{"title":"基于几种粘土混合物的耐火地聚合物","authors":"A. Gharzouni, Clément Alizé, S. Rossignol","doi":"10.5772/intechopen.98566","DOIUrl":null,"url":null,"abstract":"This chapter aims to highlight the effect of clay mixture mineral composition and alkali concentration of potassium alkaline solutions on the thermal behavior of geopolymer materials. For this, three mixtures composed of kaolin (pure, impure kaolin or mixture of both), calcium carbonate, sand and potassium feldspar and three potassium alkaline silicate solutions with different concentrations were used (5, 6 and 7 mol.L−1). At first, the effect of rotary calcination parameters at 750°C such as the dwell time (30, 60, 120 and 180 min) and weight powder (100, 400 and 500 g) was investigated. It was demonstrated that the kaolin dehydroxylation is quasi complete (> 90%) and do not significantly depend on the dwell time and powder weight. Whereas the carbonate decomposition degree increases with the increase of dwell time and the decrease of powder weight but still not complete (<80%). These differences influence the feasibility of consolidated materials. Indeed, a flash setting occurs for samples based mixtures with high calcium carbonate decomposition degree (> 50%) and low wettability values (500 μL/g) for the three used alkaline solutions. The thermal behavior at 1000°C depends on the chemical composition of the aluminosilicate source and the concentration of alkaline solution. A conservation of the compressive strength at 43 MPa after thermal treatment at 1000°C of geopolymers based on mixture of pure and impure kaolin and a low potassium concentration solution (5 mol.L−1) was evidenced.","PeriodicalId":10241,"journal":{"name":"Clay and Clay Minerals [Working Title]","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fire Resistant Geopolymers Based on Several Clays Mixtures\",\"authors\":\"A. Gharzouni, Clément Alizé, S. Rossignol\",\"doi\":\"10.5772/intechopen.98566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter aims to highlight the effect of clay mixture mineral composition and alkali concentration of potassium alkaline solutions on the thermal behavior of geopolymer materials. For this, three mixtures composed of kaolin (pure, impure kaolin or mixture of both), calcium carbonate, sand and potassium feldspar and three potassium alkaline silicate solutions with different concentrations were used (5, 6 and 7 mol.L−1). At first, the effect of rotary calcination parameters at 750°C such as the dwell time (30, 60, 120 and 180 min) and weight powder (100, 400 and 500 g) was investigated. It was demonstrated that the kaolin dehydroxylation is quasi complete (> 90%) and do not significantly depend on the dwell time and powder weight. Whereas the carbonate decomposition degree increases with the increase of dwell time and the decrease of powder weight but still not complete (<80%). These differences influence the feasibility of consolidated materials. Indeed, a flash setting occurs for samples based mixtures with high calcium carbonate decomposition degree (> 50%) and low wettability values (500 μL/g) for the three used alkaline solutions. The thermal behavior at 1000°C depends on the chemical composition of the aluminosilicate source and the concentration of alkaline solution. A conservation of the compressive strength at 43 MPa after thermal treatment at 1000°C of geopolymers based on mixture of pure and impure kaolin and a low potassium concentration solution (5 mol.L−1) was evidenced.\",\"PeriodicalId\":10241,\"journal\":{\"name\":\"Clay and Clay Minerals [Working Title]\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay and Clay Minerals [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.98566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay and Clay Minerals [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.98566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fire Resistant Geopolymers Based on Several Clays Mixtures
This chapter aims to highlight the effect of clay mixture mineral composition and alkali concentration of potassium alkaline solutions on the thermal behavior of geopolymer materials. For this, three mixtures composed of kaolin (pure, impure kaolin or mixture of both), calcium carbonate, sand and potassium feldspar and three potassium alkaline silicate solutions with different concentrations were used (5, 6 and 7 mol.L−1). At first, the effect of rotary calcination parameters at 750°C such as the dwell time (30, 60, 120 and 180 min) and weight powder (100, 400 and 500 g) was investigated. It was demonstrated that the kaolin dehydroxylation is quasi complete (> 90%) and do not significantly depend on the dwell time and powder weight. Whereas the carbonate decomposition degree increases with the increase of dwell time and the decrease of powder weight but still not complete (<80%). These differences influence the feasibility of consolidated materials. Indeed, a flash setting occurs for samples based mixtures with high calcium carbonate decomposition degree (> 50%) and low wettability values (500 μL/g) for the three used alkaline solutions. The thermal behavior at 1000°C depends on the chemical composition of the aluminosilicate source and the concentration of alkaline solution. A conservation of the compressive strength at 43 MPa after thermal treatment at 1000°C of geopolymers based on mixture of pure and impure kaolin and a low potassium concentration solution (5 mol.L−1) was evidenced.