SemCluster:一个半监督的聚类工具,用于具有深度图像理解的众包测试报告

Mingzhe Du, Shengcheng Yu, Chunrong Fang, Tongyu Li, Heyuan Zhang, Zhenyu Chen
{"title":"SemCluster:一个半监督的聚类工具,用于具有深度图像理解的众包测试报告","authors":"Mingzhe Du, Shengcheng Yu, Chunrong Fang, Tongyu Li, Heyuan Zhang, Zhenyu Chen","doi":"10.1145/3540250.3558933","DOIUrl":null,"url":null,"abstract":"Due to the openness of crowdsourced testing, mobile app crowdsourced testing has been subject to duplicate reports. The previous research methods extract the textual features of the crowdsourced test reports, combine with shallow image analysis, and perform unsupervised clustering on the crowdsourced test reports to clarify the duplication of crowdsourced test reports and solve the problem. However, these methods ignore the semantic connection between textual descriptions and screenshots, making the clustering results unsatisfactory and the deduplication effect less accurate. This paper proposes a semi-supervised clustering tool for crowdsourced test reports with deep image understanding, namely SemCluster, which makes the most of the semantic connection between textual descriptions and screenshots by constructing semantic binding rules and performing semi-supervised clustering. SemCluster improves six metrics of clustering results in the experiment compared to the state-of-the-art method, which verifies that SemCluster has achieved a good deduplication effect. The demo can be found at: https://sites.google.com/view/semcluster-demo.","PeriodicalId":68155,"journal":{"name":"软件产业与工程","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SemCluster: a semi-supervised clustering tool for crowdsourced test reports with deep image understanding\",\"authors\":\"Mingzhe Du, Shengcheng Yu, Chunrong Fang, Tongyu Li, Heyuan Zhang, Zhenyu Chen\",\"doi\":\"10.1145/3540250.3558933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the openness of crowdsourced testing, mobile app crowdsourced testing has been subject to duplicate reports. The previous research methods extract the textual features of the crowdsourced test reports, combine with shallow image analysis, and perform unsupervised clustering on the crowdsourced test reports to clarify the duplication of crowdsourced test reports and solve the problem. However, these methods ignore the semantic connection between textual descriptions and screenshots, making the clustering results unsatisfactory and the deduplication effect less accurate. This paper proposes a semi-supervised clustering tool for crowdsourced test reports with deep image understanding, namely SemCluster, which makes the most of the semantic connection between textual descriptions and screenshots by constructing semantic binding rules and performing semi-supervised clustering. SemCluster improves six metrics of clustering results in the experiment compared to the state-of-the-art method, which verifies that SemCluster has achieved a good deduplication effect. The demo can be found at: https://sites.google.com/view/semcluster-demo.\",\"PeriodicalId\":68155,\"journal\":{\"name\":\"软件产业与工程\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"软件产业与工程\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1145/3540250.3558933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件产业与工程","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1145/3540250.3558933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于众包测试的开放性,移动应用众包测试一直存在重复报告。以往的研究方法是提取众包测试报告的文本特征,结合浅层图像分析,对众包测试报告进行无监督聚类,以澄清众包测试报告的重复,解决问题。然而,这些方法忽略了文本描述和截图之间的语义联系,使得聚类结果不理想,重复数据删除效果不准确。本文针对具有深度图像理解能力的众包测试报告提出了一种半监督聚类工具SemCluster,该工具通过构建语义绑定规则并进行半监督聚类,充分利用文本描述与截图之间的语义联系。与现有方法相比,SemCluster在实验中改进了6个聚类结果指标,验证了SemCluster取得了良好的重复数据删除效果。该演示可以在https://sites.google.com/view/semcluster-demo上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SemCluster: a semi-supervised clustering tool for crowdsourced test reports with deep image understanding
Due to the openness of crowdsourced testing, mobile app crowdsourced testing has been subject to duplicate reports. The previous research methods extract the textual features of the crowdsourced test reports, combine with shallow image analysis, and perform unsupervised clustering on the crowdsourced test reports to clarify the duplication of crowdsourced test reports and solve the problem. However, these methods ignore the semantic connection between textual descriptions and screenshots, making the clustering results unsatisfactory and the deduplication effect less accurate. This paper proposes a semi-supervised clustering tool for crowdsourced test reports with deep image understanding, namely SemCluster, which makes the most of the semantic connection between textual descriptions and screenshots by constructing semantic binding rules and performing semi-supervised clustering. SemCluster improves six metrics of clustering results in the experiment compared to the state-of-the-art method, which verifies that SemCluster has achieved a good deduplication effect. The demo can be found at: https://sites.google.com/view/semcluster-demo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
676
期刊最新文献
Improving Grading Outcomes in Software Engineering Projects Through Automated Contributions Summaries GRADESTYLE: GitHub-Integrated and Automated Assessment of Java Code Style Improving Assessment of Programming Pattern Knowledge through Code Editing and Revision Designing for Real People: Teaching Agility through User-Centric Service Design Using Focus to Personalise Learning and Feedback in Software Engineering Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1