Samwel Daud Lupyana , Mtabazi Geofrey Sahini , Saada Msafiri Kattiba , Jun Gu
{"title":"植物基高分子材料作为化学外加剂在井水泥浆配方中的应用","authors":"Samwel Daud Lupyana , Mtabazi Geofrey Sahini , Saada Msafiri Kattiba , Jun Gu","doi":"10.1016/j.upstre.2021.100060","DOIUrl":null,"url":null,"abstract":"<div><p>Plants extracts contain a wide range of organic components and have been used as admixtures in modifying different cement properties. In this study, aqueous extract of <em>Euphorbia Tirucalli</em> (<em>ET</em>) as bio-admixture was characterized and tested for potential use in the preparation of well cement slurry. Several tests such as setting time tests, fluid loss tests, rheological properties of well cement slurries incorporating different proportions of the <em>ET</em> and the reference slurries without <em>ET</em> were conducted and evaluated. Phytochemical composition of <em>ET</em> was investigated by using Gas Chromatography-Mass Spectrometer (GCMS) analytical technique. Interactions between the bio-admixture and cement components during hydration were also characterized by Fourier Transform-Infrared (FT-IR) spectroscopic technique. GC–MS analysis indicates the presence of the palmitic acid groups such as hexadecanoic acid, methyl ester, n-Hexadecanoic acid and 9-Hexadecanoilc acid and the fatty acid components commonly known as linoleic acid. Incorporation of the bio-admixture shows to enhance fluid loss properties and slurry rheology. Also, the bio-admixture indicates promoting retardation of cement hydration due to increase in setting times with increase in mix proportions. These properties indicated to be dependent to the bio-admixture concentration. FT-IR spectroscopic investigations suggests possible interaction between bio-admixture and the ionic species in the cement slurry.</p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"7 ","pages":"Article 100060"},"PeriodicalIF":2.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Use of phyto-based polymeric material as chemical admixture in well cement slurry formulation\",\"authors\":\"Samwel Daud Lupyana , Mtabazi Geofrey Sahini , Saada Msafiri Kattiba , Jun Gu\",\"doi\":\"10.1016/j.upstre.2021.100060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plants extracts contain a wide range of organic components and have been used as admixtures in modifying different cement properties. In this study, aqueous extract of <em>Euphorbia Tirucalli</em> (<em>ET</em>) as bio-admixture was characterized and tested for potential use in the preparation of well cement slurry. Several tests such as setting time tests, fluid loss tests, rheological properties of well cement slurries incorporating different proportions of the <em>ET</em> and the reference slurries without <em>ET</em> were conducted and evaluated. Phytochemical composition of <em>ET</em> was investigated by using Gas Chromatography-Mass Spectrometer (GCMS) analytical technique. Interactions between the bio-admixture and cement components during hydration were also characterized by Fourier Transform-Infrared (FT-IR) spectroscopic technique. GC–MS analysis indicates the presence of the palmitic acid groups such as hexadecanoic acid, methyl ester, n-Hexadecanoic acid and 9-Hexadecanoilc acid and the fatty acid components commonly known as linoleic acid. Incorporation of the bio-admixture shows to enhance fluid loss properties and slurry rheology. Also, the bio-admixture indicates promoting retardation of cement hydration due to increase in setting times with increase in mix proportions. These properties indicated to be dependent to the bio-admixture concentration. FT-IR spectroscopic investigations suggests possible interaction between bio-admixture and the ionic species in the cement slurry.</p></div>\",\"PeriodicalId\":101264,\"journal\":{\"name\":\"Upstream Oil and Gas Technology\",\"volume\":\"7 \",\"pages\":\"Article 100060\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Upstream Oil and Gas Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266626042100030X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266626042100030X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Use of phyto-based polymeric material as chemical admixture in well cement slurry formulation
Plants extracts contain a wide range of organic components and have been used as admixtures in modifying different cement properties. In this study, aqueous extract of Euphorbia Tirucalli (ET) as bio-admixture was characterized and tested for potential use in the preparation of well cement slurry. Several tests such as setting time tests, fluid loss tests, rheological properties of well cement slurries incorporating different proportions of the ET and the reference slurries without ET were conducted and evaluated. Phytochemical composition of ET was investigated by using Gas Chromatography-Mass Spectrometer (GCMS) analytical technique. Interactions between the bio-admixture and cement components during hydration were also characterized by Fourier Transform-Infrared (FT-IR) spectroscopic technique. GC–MS analysis indicates the presence of the palmitic acid groups such as hexadecanoic acid, methyl ester, n-Hexadecanoic acid and 9-Hexadecanoilc acid and the fatty acid components commonly known as linoleic acid. Incorporation of the bio-admixture shows to enhance fluid loss properties and slurry rheology. Also, the bio-admixture indicates promoting retardation of cement hydration due to increase in setting times with increase in mix proportions. These properties indicated to be dependent to the bio-admixture concentration. FT-IR spectroscopic investigations suggests possible interaction between bio-admixture and the ionic species in the cement slurry.