利用agent网络的量子秘密聚合

Michael Ampatzis, T. Andronikos
{"title":"利用agent网络的量子秘密聚合","authors":"Michael Ampatzis, T. Andronikos","doi":"10.3390/cryptography7010005","DOIUrl":null,"url":null,"abstract":"Suppose that the renowned spymaster Alice controls a network of spies who all happen to be deployed in different geographical locations. Let us further assume that all spies have managed to get their hands on a small, albeit incomplete by itself, secret, which actually is just a part of a bigger secret. In this work, we consider the following problem: given the above situation, is it possible for the spies to securely transmit all these partial secrets to the spymaster so that they can be combined together in order to reveal the big secret to Alice? We call this problem, which, to the best of our knowledge, is a novel one for the relevant literature, the quantum secret aggregation problem. We propose a protocol, in the form of a quantum game, that addresses this problem in complete generality. Our protocol relies on the use of maximally entangled GHZ tuples, shared among Alice and all her spies. It is the power of entanglement that makes possible the secure transmission of the small partial secrets from the agents to the spymaster. As an additional bonus, entanglement guarantees the security of the protocol, by making it statistically improbable for the notorious eavesdropper Eve to steal the big secret.","PeriodicalId":13186,"journal":{"name":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","volume":"28 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantum Secret Aggregation Utilizing a Network of Agents\",\"authors\":\"Michael Ampatzis, T. Andronikos\",\"doi\":\"10.3390/cryptography7010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that the renowned spymaster Alice controls a network of spies who all happen to be deployed in different geographical locations. Let us further assume that all spies have managed to get their hands on a small, albeit incomplete by itself, secret, which actually is just a part of a bigger secret. In this work, we consider the following problem: given the above situation, is it possible for the spies to securely transmit all these partial secrets to the spymaster so that they can be combined together in order to reveal the big secret to Alice? We call this problem, which, to the best of our knowledge, is a novel one for the relevant literature, the quantum secret aggregation problem. We propose a protocol, in the form of a quantum game, that addresses this problem in complete generality. Our protocol relies on the use of maximally entangled GHZ tuples, shared among Alice and all her spies. It is the power of entanglement that makes possible the secure transmission of the small partial secrets from the agents to the spymaster. As an additional bonus, entanglement guarantees the security of the protocol, by making it statistically improbable for the notorious eavesdropper Eve to steal the big secret.\",\"PeriodicalId\":13186,\"journal\":{\"name\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"volume\":\"28 1\",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryptography7010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

假设著名的间谍大师爱丽丝控制着一个间谍网络,这些间谍碰巧都被部署在不同的地理位置。让我们进一步假设,所有的间谍都设法得到了一个小的、尽管本身不完整的秘密,这个秘密实际上只是一个更大秘密的一部分。在这项工作中,我们考虑以下问题:在上述情况下,间谍是否有可能将所有这些部分秘密安全地传输给间谍大师,并将它们组合在一起,从而向Alice揭示大秘密?我们称这个问题为量子秘密聚集问题,据我们所知,这在相关文献中是一个新颖的问题。我们提出了一个协议,以量子游戏的形式,以完全一般的方式解决这个问题。我们的协议依赖于最大纠缠GHZ元组的使用,在爱丽丝和她的所有间谍之间共享。正是这种纠缠的力量,才有可能将部分小秘密从特工那里安全地传递给间谍头子。作为额外的好处,纠缠保证了协议的安全性,因为从统计上讲,臭名昭著的窃听者伊芙不太可能窃取大秘密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Secret Aggregation Utilizing a Network of Agents
Suppose that the renowned spymaster Alice controls a network of spies who all happen to be deployed in different geographical locations. Let us further assume that all spies have managed to get their hands on a small, albeit incomplete by itself, secret, which actually is just a part of a bigger secret. In this work, we consider the following problem: given the above situation, is it possible for the spies to securely transmit all these partial secrets to the spymaster so that they can be combined together in order to reveal the big secret to Alice? We call this problem, which, to the best of our knowledge, is a novel one for the relevant literature, the quantum secret aggregation problem. We propose a protocol, in the form of a quantum game, that addresses this problem in complete generality. Our protocol relies on the use of maximally entangled GHZ tuples, shared among Alice and all her spies. It is the power of entanglement that makes possible the secure transmission of the small partial secrets from the agents to the spymaster. As an additional bonus, entanglement guarantees the security of the protocol, by making it statistically improbable for the notorious eavesdropper Eve to steal the big secret.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MMM: Authenticated Encryption with Minimum Secret State for Masking Don't Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees LPN-based Attacks in the White-box Setting Enhancing Quality and Security of the PLL-TRNG Protecting Dilithium against Leakage Revisited Sensitivity Analysis and Improved Implementations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1