{"title":"一种新的滑坡土拱应力减小模型","authors":"Xing-ming Li, E. Yan, Miao Sun, Xiangqian Yao, Shuo Li, Cheng Gao, Qian Chen","doi":"10.3311/ppci.22054","DOIUrl":null,"url":null,"abstract":"Stabilizing piles are extensively used as an effective landslide control treatment, and the soil arching effect is the key element for the performance of the pile system. Most previous studies on soil arching effect and its application in stabilizing piles were conducted with laboratory tests and numerical simulations, while limited efforts have been dedicated to the analytical characterization of such a soil-structure interaction. In this paper, a new stress-reduction model for soil arch in landslides is established by theoretical derivation. Our model calculation has demonstrated an exponential reduction in the stress along the direction of slipping between and behind stabilizing piles and thus justifies the observations of laboratory tests and numerical simulations. Thereafter, the analytical solutions to the two key arch shape parameters, namely the inclination angle at the foothold and the thickness of soil arch, are derived based on the proposed stress-reduction model. Then, the ultimate bearing capacity of soil arch between and behind stabilizing piles is subsequently calculated, and a three-level load sharing model for landslides is thus proposed based on the stress-reduction mode. The load sharing model can well capture the stage characteristics of the interaction between landslide mass and stabilizing piles. Finally, the calculation model of spacing between stabilizing piles is established based on the proposed stress-reduction model, and it turns to be good in field application. The findings of this study can contribute to a better understanding of the soil arching effect as well as a better design of the stabilizing piles.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":"12 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Stress-reduction Model for Soil Arch in Landslides\",\"authors\":\"Xing-ming Li, E. Yan, Miao Sun, Xiangqian Yao, Shuo Li, Cheng Gao, Qian Chen\",\"doi\":\"10.3311/ppci.22054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stabilizing piles are extensively used as an effective landslide control treatment, and the soil arching effect is the key element for the performance of the pile system. Most previous studies on soil arching effect and its application in stabilizing piles were conducted with laboratory tests and numerical simulations, while limited efforts have been dedicated to the analytical characterization of such a soil-structure interaction. In this paper, a new stress-reduction model for soil arch in landslides is established by theoretical derivation. Our model calculation has demonstrated an exponential reduction in the stress along the direction of slipping between and behind stabilizing piles and thus justifies the observations of laboratory tests and numerical simulations. Thereafter, the analytical solutions to the two key arch shape parameters, namely the inclination angle at the foothold and the thickness of soil arch, are derived based on the proposed stress-reduction model. Then, the ultimate bearing capacity of soil arch between and behind stabilizing piles is subsequently calculated, and a three-level load sharing model for landslides is thus proposed based on the stress-reduction mode. The load sharing model can well capture the stage characteristics of the interaction between landslide mass and stabilizing piles. Finally, the calculation model of spacing between stabilizing piles is established based on the proposed stress-reduction model, and it turns to be good in field application. The findings of this study can contribute to a better understanding of the soil arching effect as well as a better design of the stabilizing piles.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22054\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22054","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A New Stress-reduction Model for Soil Arch in Landslides
Stabilizing piles are extensively used as an effective landslide control treatment, and the soil arching effect is the key element for the performance of the pile system. Most previous studies on soil arching effect and its application in stabilizing piles were conducted with laboratory tests and numerical simulations, while limited efforts have been dedicated to the analytical characterization of such a soil-structure interaction. In this paper, a new stress-reduction model for soil arch in landslides is established by theoretical derivation. Our model calculation has demonstrated an exponential reduction in the stress along the direction of slipping between and behind stabilizing piles and thus justifies the observations of laboratory tests and numerical simulations. Thereafter, the analytical solutions to the two key arch shape parameters, namely the inclination angle at the foothold and the thickness of soil arch, are derived based on the proposed stress-reduction model. Then, the ultimate bearing capacity of soil arch between and behind stabilizing piles is subsequently calculated, and a three-level load sharing model for landslides is thus proposed based on the stress-reduction mode. The load sharing model can well capture the stage characteristics of the interaction between landslide mass and stabilizing piles. Finally, the calculation model of spacing between stabilizing piles is established based on the proposed stress-reduction model, and it turns to be good in field application. The findings of this study can contribute to a better understanding of the soil arching effect as well as a better design of the stabilizing piles.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.