Seigo Tomiyama, H. Serizawa, T. Hajima, H. Murakawa
{"title":"基于界面元的金属微结构断裂行为的初步数值研究","authors":"Seigo Tomiyama, H. Serizawa, T. Hajima, H. Murakawa","doi":"10.2207/QJJWS.29.109S","DOIUrl":null,"url":null,"abstract":"In order to demonstrate not only the deformation of grain but also the opening and/or sliding at grain boundary, the interface element was introduced into the ordinary finite element method, and this numerical method was applied for examining the microstructural fracture behavior in two-dimensional ideal microstructure obtained through Voronoi tessellations. As for the grain, the anisotropy in elastic modulus due to the grain orientation was taken into account, while the fracture strength at grain boundary was assumed to be related to the boundary energy which could be determined by the atomic disorder at the boundary. From the serial computational results for examining the influences of elastic properties in grain (isotropy and anisotropy), mechanical property at grain boundary (interaction between opening and sliding deformation), and grain configurations, it was revealed that all the factors varied in this research might affect the microstructural fracture behavior. Also, it can be concluded that this numerical method with the interface element can be useful for demonstrating the microstructural fracture behavior including the deformation at grain boundary.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"40 1","pages":"238-240"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preliminary numerical research of microstructural fracture behavior in metal by using interface element\",\"authors\":\"Seigo Tomiyama, H. Serizawa, T. Hajima, H. Murakawa\",\"doi\":\"10.2207/QJJWS.29.109S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to demonstrate not only the deformation of grain but also the opening and/or sliding at grain boundary, the interface element was introduced into the ordinary finite element method, and this numerical method was applied for examining the microstructural fracture behavior in two-dimensional ideal microstructure obtained through Voronoi tessellations. As for the grain, the anisotropy in elastic modulus due to the grain orientation was taken into account, while the fracture strength at grain boundary was assumed to be related to the boundary energy which could be determined by the atomic disorder at the boundary. From the serial computational results for examining the influences of elastic properties in grain (isotropy and anisotropy), mechanical property at grain boundary (interaction between opening and sliding deformation), and grain configurations, it was revealed that all the factors varied in this research might affect the microstructural fracture behavior. Also, it can be concluded that this numerical method with the interface element can be useful for demonstrating the microstructural fracture behavior including the deformation at grain boundary.\",\"PeriodicalId\":23197,\"journal\":{\"name\":\"Transactions of JWRI\",\"volume\":\"40 1\",\"pages\":\"238-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of JWRI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2207/QJJWS.29.109S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of JWRI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/QJJWS.29.109S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary numerical research of microstructural fracture behavior in metal by using interface element
In order to demonstrate not only the deformation of grain but also the opening and/or sliding at grain boundary, the interface element was introduced into the ordinary finite element method, and this numerical method was applied for examining the microstructural fracture behavior in two-dimensional ideal microstructure obtained through Voronoi tessellations. As for the grain, the anisotropy in elastic modulus due to the grain orientation was taken into account, while the fracture strength at grain boundary was assumed to be related to the boundary energy which could be determined by the atomic disorder at the boundary. From the serial computational results for examining the influences of elastic properties in grain (isotropy and anisotropy), mechanical property at grain boundary (interaction between opening and sliding deformation), and grain configurations, it was revealed that all the factors varied in this research might affect the microstructural fracture behavior. Also, it can be concluded that this numerical method with the interface element can be useful for demonstrating the microstructural fracture behavior including the deformation at grain boundary.