恒星飞掠引起的奥尔特云彗星的散射和动力学演化

E. Pilat-Lohinger, S. Clees, M. Zimmermann, B. Loibnegger
{"title":"恒星飞掠引起的奥尔特云彗星的散射和动力学演化","authors":"E. Pilat-Lohinger, S. Clees, M. Zimmermann, B. Loibnegger","doi":"10.1017/S1743921321001332","DOIUrl":null,"url":null,"abstract":"Abstract Recent GAIA observations revealed that the K-type star Gliese 710 will cross the Oort cloud in a distance between approximately 4000 and 12000 au in about 1.3 Myrs. This occurrence motivated us to study the influence of a stellar encounter on comets in the outer region of the solar system. Even if the Oort cloud extends to 100000 au from the sun, we restrict our study to the region between 30 and 25000 au where 25 million objects are distributed randomly. Comets at larger distances are not taken into account as they hardly enter the observable region after a single stellar fly-by. An overview of all objects that are scattered towards the sun for the different fly-by distances at 4000, 8000 and 12000 au shows that only a handful of objects are moving towards the sun immediately after the stellar encounter. However, a subsequent long-term study of all objects that are moved into highly eccentric motion by the stellar fly-by shows a significant increase of comets crossing Jupiter’s orbit and entering into the observable region. In addition, our study shows the first comets crossing the orbit of Earth only about 2.5 Myrs after the stellar fly-by. Thus, the impact risk for the Earth increases only some million years after the stellar fly-by.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":"57 1","pages":"214 - 219"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the scattering and dynamical evolution of Oort cloud comets caused by a stellar fly-by\",\"authors\":\"E. Pilat-Lohinger, S. Clees, M. Zimmermann, B. Loibnegger\",\"doi\":\"10.1017/S1743921321001332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent GAIA observations revealed that the K-type star Gliese 710 will cross the Oort cloud in a distance between approximately 4000 and 12000 au in about 1.3 Myrs. This occurrence motivated us to study the influence of a stellar encounter on comets in the outer region of the solar system. Even if the Oort cloud extends to 100000 au from the sun, we restrict our study to the region between 30 and 25000 au where 25 million objects are distributed randomly. Comets at larger distances are not taken into account as they hardly enter the observable region after a single stellar fly-by. An overview of all objects that are scattered towards the sun for the different fly-by distances at 4000, 8000 and 12000 au shows that only a handful of objects are moving towards the sun immediately after the stellar encounter. However, a subsequent long-term study of all objects that are moved into highly eccentric motion by the stellar fly-by shows a significant increase of comets crossing Jupiter’s orbit and entering into the observable region. In addition, our study shows the first comets crossing the orbit of Earth only about 2.5 Myrs after the stellar fly-by. Thus, the impact risk for the Earth increases only some million years after the stellar fly-by.\",\"PeriodicalId\":20590,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union\",\"volume\":\"57 1\",\"pages\":\"214 - 219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1743921321001332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921321001332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的GAIA观测显示,k型恒星Gliese 710将在大约1.3兆米的距离上穿过奥尔特云,距离大约在4000到12000天文单位之间。这一事件促使我们研究恒星相遇对太阳系外区域彗星的影响。即使奥尔特云延伸到距离太阳100000天文单位,我们也将研究限制在30到25000天文单位之间的区域,其中有2500万个物体随机分布。距离较远的彗星没有被考虑在内,因为它们在一次恒星飞掠之后很难进入可观测区域。对在4000、8000和12000天文单位的不同飞掠距离上向太阳散射的所有物体的概述表明,只有少数物体在与恒星相遇后立即向太阳移动。然而,随后对所有被恒星飞掠而进入高偏心运动的天体进行的长期研究表明,穿越木星轨道并进入可观测区域的彗星显著增加。此外,我们的研究表明,第一批彗星在飞越地球大约2.5米后才穿过地球轨道。因此,撞击地球的风险只会在恒星飞掠后的几百万年增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the scattering and dynamical evolution of Oort cloud comets caused by a stellar fly-by
Abstract Recent GAIA observations revealed that the K-type star Gliese 710 will cross the Oort cloud in a distance between approximately 4000 and 12000 au in about 1.3 Myrs. This occurrence motivated us to study the influence of a stellar encounter on comets in the outer region of the solar system. Even if the Oort cloud extends to 100000 au from the sun, we restrict our study to the region between 30 and 25000 au where 25 million objects are distributed randomly. Comets at larger distances are not taken into account as they hardly enter the observable region after a single stellar fly-by. An overview of all objects that are scattered towards the sun for the different fly-by distances at 4000, 8000 and 12000 au shows that only a handful of objects are moving towards the sun immediately after the stellar encounter. However, a subsequent long-term study of all objects that are moved into highly eccentric motion by the stellar fly-by shows a significant increase of comets crossing Jupiter’s orbit and entering into the observable region. In addition, our study shows the first comets crossing the orbit of Earth only about 2.5 Myrs after the stellar fly-by. Thus, the impact risk for the Earth increases only some million years after the stellar fly-by.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latitudinal variations of charged dust in co-orbital resonance with Jupiter On the scattering and dynamical evolution of Oort cloud comets caused by a stellar fly-by New results on orbital resonances Dynamics around the binary system (65803) Didymos Noise, friction and the radial-orbit instability in anisotropic stellar systems: stochastic N–body simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1