Jonas Markussen, Lars Bjørlykke Kristiansen, P. Halvorsen, Halvor Kielland-Gyrud, H. Stensland, C. Griwodz
{"title":"SmartIO:通过PCIe组网实现零开销设备共享","authors":"Jonas Markussen, Lars Bjørlykke Kristiansen, P. Halvorsen, Halvor Kielland-Gyrud, H. Stensland, C. Griwodz","doi":"10.1145/3462545","DOIUrl":null,"url":null,"abstract":"The large variety of compute-heavy and data-driven applications accelerate the need for a distributed I/O solution that enables cost-effective scaling of resources between networked hosts. For example, in a cluster system, different machines may have various devices available at different times, but moving workloads to remote units over the network is often costly and introduces large overheads compared to accessing local resources. To facilitate I/O disaggregation and device sharing among hosts connected using Peripheral Component Interconnect Express (PCIe) non-transparent bridges, we present SmartIO. NVMes, GPUs, network adapters, or any other standard PCIe device may be borrowed and accessed directly, as if they were local to the remote machines. We provide capabilities beyond existing disaggregation solutions by combining traditional I/O with distributed shared-memory functionality, allowing devices to become part of the same global address space as cluster applications. Software is entirely removed from the data path, and simultaneous sharing of a device among application processes running on remote hosts is enabled. Our experimental results show that I/O devices can be shared with remote hosts, achieving native PCIe performance. Thus, compared to existing device distribution mechanisms, SmartIO provides more efficient, low-cost resource sharing, increasing the overall system performance.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"36 1","pages":"2:1-2:78"},"PeriodicalIF":2.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SmartIO: Zero-overhead Device Sharing through PCIe Networking\",\"authors\":\"Jonas Markussen, Lars Bjørlykke Kristiansen, P. Halvorsen, Halvor Kielland-Gyrud, H. Stensland, C. Griwodz\",\"doi\":\"10.1145/3462545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large variety of compute-heavy and data-driven applications accelerate the need for a distributed I/O solution that enables cost-effective scaling of resources between networked hosts. For example, in a cluster system, different machines may have various devices available at different times, but moving workloads to remote units over the network is often costly and introduces large overheads compared to accessing local resources. To facilitate I/O disaggregation and device sharing among hosts connected using Peripheral Component Interconnect Express (PCIe) non-transparent bridges, we present SmartIO. NVMes, GPUs, network adapters, or any other standard PCIe device may be borrowed and accessed directly, as if they were local to the remote machines. We provide capabilities beyond existing disaggregation solutions by combining traditional I/O with distributed shared-memory functionality, allowing devices to become part of the same global address space as cluster applications. Software is entirely removed from the data path, and simultaneous sharing of a device among application processes running on remote hosts is enabled. Our experimental results show that I/O devices can be shared with remote hosts, achieving native PCIe performance. Thus, compared to existing device distribution mechanisms, SmartIO provides more efficient, low-cost resource sharing, increasing the overall system performance.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"36 1\",\"pages\":\"2:1-2:78\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3462545\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3462545","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
SmartIO: Zero-overhead Device Sharing through PCIe Networking
The large variety of compute-heavy and data-driven applications accelerate the need for a distributed I/O solution that enables cost-effective scaling of resources between networked hosts. For example, in a cluster system, different machines may have various devices available at different times, but moving workloads to remote units over the network is often costly and introduces large overheads compared to accessing local resources. To facilitate I/O disaggregation and device sharing among hosts connected using Peripheral Component Interconnect Express (PCIe) non-transparent bridges, we present SmartIO. NVMes, GPUs, network adapters, or any other standard PCIe device may be borrowed and accessed directly, as if they were local to the remote machines. We provide capabilities beyond existing disaggregation solutions by combining traditional I/O with distributed shared-memory functionality, allowing devices to become part of the same global address space as cluster applications. Software is entirely removed from the data path, and simultaneous sharing of a device among application processes running on remote hosts is enabled. Our experimental results show that I/O devices can be shared with remote hosts, achieving native PCIe performance. Thus, compared to existing device distribution mechanisms, SmartIO provides more efficient, low-cost resource sharing, increasing the overall system performance.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.