多位点连锁分析中单倍型频率的递归求解方法

M. Ng
{"title":"多位点连锁分析中单倍型频率的递归求解方法","authors":"M. Ng","doi":"10.1142/9781860947292_0016","DOIUrl":null,"url":null,"abstract":"Multiple loci analysis has become popular with the advanced development in biological experiments. A lot of studies have been focused on the biological and the statistical properties of such multiple loci analysis. In this paper, we study one of the important computational problems: solving the probabilities of haplotype classes from a large linear system Ax = b derived from the recombination events in multiple loci analysis. Since the size of the recombination matrix A increases exponentially with respect to the number of loci, fast solvers are required to deal with a large number of loci in the analysis. By exploiting the nice structure of the matrix A, we develop an efficient recursive algorithm for solving such structured linear systems. In particular, the complexity of the proposed algorithm is of O(mlogm) operations and the memory requirement is of O(m) locations where m is the size of the matrix A. Numerical examples are given to demonstrate the effectiveness of our efficient solver.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"8 1","pages":"129-138"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Recursive Method for Solving Haplotype Frequencies in Multiple Loci Linkage Analysis\",\"authors\":\"M. Ng\",\"doi\":\"10.1142/9781860947292_0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple loci analysis has become popular with the advanced development in biological experiments. A lot of studies have been focused on the biological and the statistical properties of such multiple loci analysis. In this paper, we study one of the important computational problems: solving the probabilities of haplotype classes from a large linear system Ax = b derived from the recombination events in multiple loci analysis. Since the size of the recombination matrix A increases exponentially with respect to the number of loci, fast solvers are required to deal with a large number of loci in the analysis. By exploiting the nice structure of the matrix A, we develop an efficient recursive algorithm for solving such structured linear systems. In particular, the complexity of the proposed algorithm is of O(mlogm) operations and the memory requirement is of O(m) locations where m is the size of the matrix A. Numerical examples are given to demonstrate the effectiveness of our efficient solver.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"8 1\",\"pages\":\"129-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947292_0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着生物实验技术的发展,多基因座分析已成为一种流行的分析方法。许多研究都集中在这种多位点分析的生物学和统计学特性上。本文研究了一个重要的计算问题:求解大型线性系统Ax = b在多基因座分析中由重组事件导出的单倍型类的概率。由于重组矩阵A的大小相对于基因座的数量呈指数增长,因此需要快速求解器来处理分析中的大量基因座。利用矩阵A的良好结构,我们开发了求解这类结构化线性系统的有效递归算法。特别地,所提出的算法的复杂度为O(mlogm)个操作,内存需求为O(m)个位置,其中m为矩阵a的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Recursive Method for Solving Haplotype Frequencies in Multiple Loci Linkage Analysis
Multiple loci analysis has become popular with the advanced development in biological experiments. A lot of studies have been focused on the biological and the statistical properties of such multiple loci analysis. In this paper, we study one of the important computational problems: solving the probabilities of haplotype classes from a large linear system Ax = b derived from the recombination events in multiple loci analysis. Since the size of the recombination matrix A increases exponentially with respect to the number of loci, fast solvers are required to deal with a large number of loci in the analysis. By exploiting the nice structure of the matrix A, we develop an efficient recursive algorithm for solving such structured linear systems. In particular, the complexity of the proposed algorithm is of O(mlogm) operations and the memory requirement is of O(m) locations where m is the size of the matrix A. Numerical examples are given to demonstrate the effectiveness of our efficient solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1