基于机器学习算法的小数据状态下疲劳裂纹长度预测

IF 2.2 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Eksploatacja I Niezawodnosc-Maintenance and Reliability Pub Date : 2021-07-07 DOI:10.17531/EIN.2021.3.19
Maciej Badora, Marzia Sepe, M. Bielecki, A. Graziano, T. Szolc
{"title":"基于机器学习算法的小数据状态下疲劳裂纹长度预测","authors":"Maciej Badora, Marzia Sepe, M. Bielecki, A. Graziano, T. Szolc","doi":"10.17531/EIN.2021.3.19","DOIUrl":null,"url":null,"abstract":"In this paper several statistical learning algorithms are used to predict the maximal length of fatigue cracks based on a sample composed of 31 observations. The small-data regime is still a problem for many professionals, especially in the areas where failures occur rarely. The analyzed object is a high-pressure Nozzle of a heavy-duty gas turbine. Operating parameters of the engines are used for the regression analysis. The following algorithms are used in this work: multiple linear and polynomial regression, random forest, kernel-based methods, AdaBoost and extreme gradient boosting and artificial neural networks. A substantial part of the paper provides advice on the effective selection of features. The paper explains how to process the dataset in order to reduce uncertainty; thus, simplifying the analysis of the results. The proposed loss and cost functions are custom and promote solutions accurately predicting the longest cracks. The obtained results confirm that some of the algorithms can accurately predict maximal lengths of the fatigue cracks, even if the sample is small.","PeriodicalId":50549,"journal":{"name":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","volume":"43 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting length of fatigue cracks by means of machine learning algorithms in the small-data regime\",\"authors\":\"Maciej Badora, Marzia Sepe, M. Bielecki, A. Graziano, T. Szolc\",\"doi\":\"10.17531/EIN.2021.3.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper several statistical learning algorithms are used to predict the maximal length of fatigue cracks based on a sample composed of 31 observations. The small-data regime is still a problem for many professionals, especially in the areas where failures occur rarely. The analyzed object is a high-pressure Nozzle of a heavy-duty gas turbine. Operating parameters of the engines are used for the regression analysis. The following algorithms are used in this work: multiple linear and polynomial regression, random forest, kernel-based methods, AdaBoost and extreme gradient boosting and artificial neural networks. A substantial part of the paper provides advice on the effective selection of features. The paper explains how to process the dataset in order to reduce uncertainty; thus, simplifying the analysis of the results. The proposed loss and cost functions are custom and promote solutions accurately predicting the longest cracks. The obtained results confirm that some of the algorithms can accurately predict maximal lengths of the fatigue cracks, even if the sample is small.\",\"PeriodicalId\":50549,\"journal\":{\"name\":\"Eksploatacja I Niezawodnosc-Maintenance and Reliability\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja I Niezawodnosc-Maintenance and Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17531/EIN.2021.3.19\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17531/EIN.2021.3.19","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文采用了几种统计学习算法来预测由31个观测值组成的样本的最大疲劳裂纹长度。对于许多专业人士来说,小数据制度仍然是一个问题,特别是在很少发生故障的领域。分析对象为某重型燃气轮机高压喷管。采用发动机的运行参数进行回归分析。在这项工作中使用了以下算法:多元线性和多项式回归、随机森林、基于核的方法、AdaBoost和极端梯度增强以及人工神经网络。本文的大部分内容提供了关于有效选择特征的建议。本文阐述了如何对数据集进行处理以减少不确定性;从而简化了分析结果。所提出的损失和成本函数是自定义的,并促进了准确预测最长裂缝的解决方案。结果表明,即使试样很小,某些算法也能准确地预测疲劳裂纹的最大长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting length of fatigue cracks by means of machine learning algorithms in the small-data regime
In this paper several statistical learning algorithms are used to predict the maximal length of fatigue cracks based on a sample composed of 31 observations. The small-data regime is still a problem for many professionals, especially in the areas where failures occur rarely. The analyzed object is a high-pressure Nozzle of a heavy-duty gas turbine. Operating parameters of the engines are used for the regression analysis. The following algorithms are used in this work: multiple linear and polynomial regression, random forest, kernel-based methods, AdaBoost and extreme gradient boosting and artificial neural networks. A substantial part of the paper provides advice on the effective selection of features. The paper explains how to process the dataset in order to reduce uncertainty; thus, simplifying the analysis of the results. The proposed loss and cost functions are custom and promote solutions accurately predicting the longest cracks. The obtained results confirm that some of the algorithms can accurately predict maximal lengths of the fatigue cracks, even if the sample is small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
24.00%
发文量
55
审稿时长
3 months
期刊介绍: The quarterly Eksploatacja i Niezawodność – Maintenance and Reliability publishes articles containing original results of experimental research on the durabilty and reliability of technical objects. We also accept papers presenting theoretical analyses supported by physical interpretation of causes or ones that have been verified empirically. Eksploatacja i Niezawodność – Maintenance and Reliability also publishes articles on innovative modeling approaches and research methods regarding the durability and reliability of objects.
期刊最新文献
Study on reliability of emergency braking performance of high-speed and heavy-load monorail crane Fault analysis and reliability evaluation for motorized spindle of cycloidal gear grinding machine based on multi-source bayes Reliability Estimation of Retraction Mechanism Kinematic Accuracy under Small Sample Remaining useful life prediction of equipment considering dynamic thresholds under the influence of maintenance Fault Diagnosis of Suspension System Based on Spectrogram Image and Vision Transformer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1