第5部分概述:处理器

S. Rusu, Sonia Leon
{"title":"第5部分概述:处理器","authors":"S. Rusu, Sonia Leon","doi":"10.1109/ISSCC.2010.5434032","DOIUrl":null,"url":null,"abstract":"Processors have long been the leading edge of integration and process technology and this year's papers emphatically demonstrate that this is still the case. This year's crop of processors exhibit astounding increases in chip integration levels with more cores, special-function units and huge increases in the bandwidth of both on- and off-die interconnect. Emerging markets combine the attributes of network processors (many-threaded low-power cores) and server processors (large cores with virtualization and RAS). Higher levels of memory integration are achieved by using embedded DRAM in these large processors to support the higher-bandwidth demands of throughput computing. The challenges of managing the dramatic growth in dynamic power and leakage (if all integrated components were allowed to activate simultaneously) are addressed with a variety of innovative power management methods such as on-die gating and multiple voltage and frequency domains. Moore's law continues as the first 32nm processors from Intel and AMD are described, together with the latest implementation of the POWER and SPARC architectures.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"27 1","pages":"94-95"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Session 5 overview: Processors\",\"authors\":\"S. Rusu, Sonia Leon\",\"doi\":\"10.1109/ISSCC.2010.5434032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processors have long been the leading edge of integration and process technology and this year's papers emphatically demonstrate that this is still the case. This year's crop of processors exhibit astounding increases in chip integration levels with more cores, special-function units and huge increases in the bandwidth of both on- and off-die interconnect. Emerging markets combine the attributes of network processors (many-threaded low-power cores) and server processors (large cores with virtualization and RAS). Higher levels of memory integration are achieved by using embedded DRAM in these large processors to support the higher-bandwidth demands of throughput computing. The challenges of managing the dramatic growth in dynamic power and leakage (if all integrated components were allowed to activate simultaneously) are addressed with a variety of innovative power management methods such as on-die gating and multiple voltage and frequency domains. Moore's law continues as the first 32nm processors from Intel and AMD are described, together with the latest implementation of the POWER and SPARC architectures.\",\"PeriodicalId\":6418,\"journal\":{\"name\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"volume\":\"27 1\",\"pages\":\"94-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2010.5434032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5434032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

处理器长期以来一直处于集成和工艺技术的前沿,今年的论文强调表明,情况仍然如此。今年的处理器在芯片集成水平上有了惊人的提高,有了更多的内核、特殊功能单元,芯片内外互连的带宽也有了巨大的提高。新兴市场结合了网络处理器(多线程低功耗核心)和服务器处理器(具有虚拟化和RAS的大型核心)的特性。通过在这些大型处理器中使用嵌入式DRAM来实现更高级别的内存集成,以支持吞吐量计算的更高带宽需求。管理急剧增长的动态功率和泄漏(如果允许所有集成组件同时激活)的挑战可以通过各种创新的电源管理方法(如模上门控和多个电压和频域)来解决。随着英特尔和AMD推出的首批32纳米处理器,以及POWER和SPARC架构的最新实现,摩尔定律仍在继续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Session 5 overview: Processors
Processors have long been the leading edge of integration and process technology and this year's papers emphatically demonstrate that this is still the case. This year's crop of processors exhibit astounding increases in chip integration levels with more cores, special-function units and huge increases in the bandwidth of both on- and off-die interconnect. Emerging markets combine the attributes of network processors (many-threaded low-power cores) and server processors (large cores with virtualization and RAS). Higher levels of memory integration are achieved by using embedded DRAM in these large processors to support the higher-bandwidth demands of throughput computing. The challenges of managing the dramatic growth in dynamic power and leakage (if all integrated components were allowed to activate simultaneously) are addressed with a variety of innovative power management methods such as on-die gating and multiple voltage and frequency domains. Moore's law continues as the first 32nm processors from Intel and AMD are described, together with the latest implementation of the POWER and SPARC architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An 8.5Gb/s CMOS OEIC with on-chip photodiode for short-distance optical communications A 4.5mW/Gb/s 6.4Gb/s 22+1-lane source-synchronous link rx core with optional cleanup PLL in 65nm CMOS A 76dBΩ 1.7GHz 0.18µm CMOS tunable transimpedance amplifier using broadband current pre-amplifier for high frequency lateral micromechanical oscillators A fully integrated 77GHz FMCW radar system in 65nm CMOS A timing controlled AC-DC converter for biomedical implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1