Huan-Jyh Shyur, Chichang Jou, Chi-Bin Cheng, Chih-Yu Yen
{"title":"带置信约束的模式增长方法发现时间间隔序列模式","authors":"Huan-Jyh Shyur, Chichang Jou, Chi-Bin Cheng, Chih-Yu Yen","doi":"10.6186/IJIMS.2016.27.2.4","DOIUrl":null,"url":null,"abstract":"Sequential pattern mining is to discover frequent sequential patterns in a sequence database. The technique is applied to fields such as web click-stream mining, failure forecast, and traf- fic analysis. Conventional sequential pattern-mining approaches generally focus only the orders of items; however, the time interval between two consecutive events can be a valuable information when the time of the occurrence of an event is concerned. This study extends the concept of the well-known pattern growth approach, PrefixSpan algorithm, to propose a novel sequential pattern mining approach for sequential patterns with time intervals. Unlike the other time-interval sequential pattern-mining algorithms, the approach concerns the time for the next event to occur more than the timing information with its precedent events. To obtain a more reliable sequential pattern, a new measure of the confidence of a sequential pattern is defined. Experiments are conducted to evaluate the performance of the proposed approach.","PeriodicalId":39953,"journal":{"name":"International Journal of Information and Management Sciences","volume":"5 1","pages":"129-145"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering Time-Interval Sequential Patterns by a Pattern Growth Approach with Confidence Constraints\",\"authors\":\"Huan-Jyh Shyur, Chichang Jou, Chi-Bin Cheng, Chih-Yu Yen\",\"doi\":\"10.6186/IJIMS.2016.27.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential pattern mining is to discover frequent sequential patterns in a sequence database. The technique is applied to fields such as web click-stream mining, failure forecast, and traf- fic analysis. Conventional sequential pattern-mining approaches generally focus only the orders of items; however, the time interval between two consecutive events can be a valuable information when the time of the occurrence of an event is concerned. This study extends the concept of the well-known pattern growth approach, PrefixSpan algorithm, to propose a novel sequential pattern mining approach for sequential patterns with time intervals. Unlike the other time-interval sequential pattern-mining algorithms, the approach concerns the time for the next event to occur more than the timing information with its precedent events. To obtain a more reliable sequential pattern, a new measure of the confidence of a sequential pattern is defined. Experiments are conducted to evaluate the performance of the proposed approach.\",\"PeriodicalId\":39953,\"journal\":{\"name\":\"International Journal of Information and Management Sciences\",\"volume\":\"5 1\",\"pages\":\"129-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6186/IJIMS.2016.27.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6186/IJIMS.2016.27.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Discovering Time-Interval Sequential Patterns by a Pattern Growth Approach with Confidence Constraints
Sequential pattern mining is to discover frequent sequential patterns in a sequence database. The technique is applied to fields such as web click-stream mining, failure forecast, and traf- fic analysis. Conventional sequential pattern-mining approaches generally focus only the orders of items; however, the time interval between two consecutive events can be a valuable information when the time of the occurrence of an event is concerned. This study extends the concept of the well-known pattern growth approach, PrefixSpan algorithm, to propose a novel sequential pattern mining approach for sequential patterns with time intervals. Unlike the other time-interval sequential pattern-mining algorithms, the approach concerns the time for the next event to occur more than the timing information with its precedent events. To obtain a more reliable sequential pattern, a new measure of the confidence of a sequential pattern is defined. Experiments are conducted to evaluate the performance of the proposed approach.
期刊介绍:
- Information Management - Management Sciences - Operation Research - Decision Theory - System Theory - Statistics - Business Administration - Finance - Numerical computations - Statistical simulations - Decision support system - Expert system - Knowledge-based systems - Artificial intelligence