Nikola Slavković, S. Zivanovic, Nikola Vorkapić, Z. Dimić
{"title":"混合运动四轴机器人编程与仿真系统的开发","authors":"Nikola Slavković, S. Zivanovic, Nikola Vorkapić, Z. Dimić","doi":"10.5937/fme2203403s","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for developing the programming and offline simulation systems for low-cost industrial robots in the MatLab/Simulink environment. The approach is presented in the example of a virtual model of a 4-axis robot with hybrid kinematics intended for manipulation tasks. The industrial robot with hybrid kinematics consists of the well-known 5R planar parallel mechanism to which two serial axes have been added. The programming system developed in a MatLab environment involves generating G-code programs based on given pick and place points. The virtual model included in the simulation system is configured in the Simulink environment based on the CAD model of the robot and its kinematic structure. The kinematic model and the inverse kinematic problem have to be included in the virtual model to realize the motion of the virtual robot. The system of programming and simulation has been verified through several examples that include object manipulation to perform various tasks.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Development of the programming and simulation system of 4-axis robot with hybrid kinematic\",\"authors\":\"Nikola Slavković, S. Zivanovic, Nikola Vorkapić, Z. Dimić\",\"doi\":\"10.5937/fme2203403s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for developing the programming and offline simulation systems for low-cost industrial robots in the MatLab/Simulink environment. The approach is presented in the example of a virtual model of a 4-axis robot with hybrid kinematics intended for manipulation tasks. The industrial robot with hybrid kinematics consists of the well-known 5R planar parallel mechanism to which two serial axes have been added. The programming system developed in a MatLab environment involves generating G-code programs based on given pick and place points. The virtual model included in the simulation system is configured in the Simulink environment based on the CAD model of the robot and its kinematic structure. The kinematic model and the inverse kinematic problem have to be included in the virtual model to realize the motion of the virtual robot. The system of programming and simulation has been verified through several examples that include object manipulation to perform various tasks.\",\"PeriodicalId\":12218,\"journal\":{\"name\":\"FME Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FME Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/fme2203403s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2203403s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Development of the programming and simulation system of 4-axis robot with hybrid kinematic
This paper presents an approach for developing the programming and offline simulation systems for low-cost industrial robots in the MatLab/Simulink environment. The approach is presented in the example of a virtual model of a 4-axis robot with hybrid kinematics intended for manipulation tasks. The industrial robot with hybrid kinematics consists of the well-known 5R planar parallel mechanism to which two serial axes have been added. The programming system developed in a MatLab environment involves generating G-code programs based on given pick and place points. The virtual model included in the simulation system is configured in the Simulink environment based on the CAD model of the robot and its kinematic structure. The kinematic model and the inverse kinematic problem have to be included in the virtual model to realize the motion of the virtual robot. The system of programming and simulation has been verified through several examples that include object manipulation to perform various tasks.