基于匹配滤波的扩展全波形反演

Yiming Li, T. Alkhalifah
{"title":"基于匹配滤波的扩展全波形反演","authors":"Yiming Li, T. Alkhalifah","doi":"10.3997/2214-4609.201901002","DOIUrl":null,"url":null,"abstract":"Summary Extended waveform inversion provides an effective way to mitigate cycle skipping that usually occurs in conventional full waveform inversion (FWI), resulting in an inaccurate local minimum model. A matching filter between the predicted and observed data can provide an additional degree of freedom to avoid the cycle skipping. We extend the search space to treat the matching filter as an independent variable that we use to bring the compared data within a half cycle to obtain accurate direction of velocity updates. In this case, the objective function with a reasonable penalty parameter has a larger region of convexity compared to conventional FWI. The normalization of the data can bring us an equivalent normalization of the filter, and a more effective convergence. A Marmousi example demonstrates these features.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Matching-Filter Based Extended Full Waveform Inversion\",\"authors\":\"Yiming Li, T. Alkhalifah\",\"doi\":\"10.3997/2214-4609.201901002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Extended waveform inversion provides an effective way to mitigate cycle skipping that usually occurs in conventional full waveform inversion (FWI), resulting in an inaccurate local minimum model. A matching filter between the predicted and observed data can provide an additional degree of freedom to avoid the cycle skipping. We extend the search space to treat the matching filter as an independent variable that we use to bring the compared data within a half cycle to obtain accurate direction of velocity updates. In this case, the objective function with a reasonable penalty parameter has a larger region of convexity compared to conventional FWI. The normalization of the data can bring us an equivalent normalization of the filter, and a more effective convergence. A Marmousi example demonstrates these features.\",\"PeriodicalId\":6840,\"journal\":{\"name\":\"81st EAGE Conference and Exhibition 2019\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"81st EAGE Conference and Exhibition 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201901002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201901002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

扩展波形反演提供了一种有效的方法来缓解常规全波形反演(FWI)中经常出现的周期跳变,这种跳变会导致局部最小值模型不准确。预测和观测数据之间的匹配过滤器可以提供额外的自由度,以避免周期跳变。我们扩展了搜索空间,将匹配滤波器视为一个自变量,我们使用它将比较数据置于半周期内以获得准确的速度更新方向。在这种情况下,具有合理惩罚参数的目标函数比传统的FWI具有更大的凸域。数据的归一化可以给我们带来一个等价的归一化滤波器,并且更有效的收敛。一个Marmousi示例演示了这些特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matching-Filter Based Extended Full Waveform Inversion
Summary Extended waveform inversion provides an effective way to mitigate cycle skipping that usually occurs in conventional full waveform inversion (FWI), resulting in an inaccurate local minimum model. A matching filter between the predicted and observed data can provide an additional degree of freedom to avoid the cycle skipping. We extend the search space to treat the matching filter as an independent variable that we use to bring the compared data within a half cycle to obtain accurate direction of velocity updates. In this case, the objective function with a reasonable penalty parameter has a larger region of convexity compared to conventional FWI. The normalization of the data can bring us an equivalent normalization of the filter, and a more effective convergence. A Marmousi example demonstrates these features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1