{"title":"一种利用图的极大分量分析生物网络的聚类方法","authors":"M. Hayashida, T. Akutsu, H. Nagamochi","doi":"10.1142/9781860947995_0028","DOIUrl":null,"url":null,"abstract":"This poster proposes a novel clustering method for analyzing biological networks. In this method, each biological network is treated as an undirected graph and edges are weighted based on similarities of nodes. Then, maximal components, which are defined based on edge connectivity, are computed and the nodes are partitioned into clusters by selecting disjoint maximal components. The proposed method was applied to clustering of protein sequences and was compared with conventional clustering methods. The obtained clusters were evaluated using P-values for GO (GeneOntology) terms. The average P-values for the proposed method were better than those for other methods.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"6 1","pages":"257-266"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Clustering Method for Analysis of Biological Networks using Maximal Components of Graphs\",\"authors\":\"M. Hayashida, T. Akutsu, H. Nagamochi\",\"doi\":\"10.1142/9781860947995_0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This poster proposes a novel clustering method for analyzing biological networks. In this method, each biological network is treated as an undirected graph and edges are weighted based on similarities of nodes. Then, maximal components, which are defined based on edge connectivity, are computed and the nodes are partitioned into clusters by selecting disjoint maximal components. The proposed method was applied to clustering of protein sequences and was compared with conventional clustering methods. The obtained clusters were evaluated using P-values for GO (GeneOntology) terms. The average P-values for the proposed method were better than those for other methods.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"6 1\",\"pages\":\"257-266\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947995_0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Clustering Method for Analysis of Biological Networks using Maximal Components of Graphs
This poster proposes a novel clustering method for analyzing biological networks. In this method, each biological network is treated as an undirected graph and edges are weighted based on similarities of nodes. Then, maximal components, which are defined based on edge connectivity, are computed and the nodes are partitioned into clusters by selecting disjoint maximal components. The proposed method was applied to clustering of protein sequences and was compared with conventional clustering methods. The obtained clusters were evaluated using P-values for GO (GeneOntology) terms. The average P-values for the proposed method were better than those for other methods.