S. Fichtner, F. Lofink, B. Wagner, Georg Schönweger, Tom-Niklas Kreutzer, A. Petraru, H. Kohlstedt
{"title":"AlScN中的铁电性:开关、压印和150nm以下薄膜","authors":"S. Fichtner, F. Lofink, B. Wagner, Georg Schönweger, Tom-Niklas Kreutzer, A. Petraru, H. Kohlstedt","doi":"10.1109/IFCS-ISAF41089.2020.9234883","DOIUrl":null,"url":null,"abstract":"The discovery of ferroelectricity in AlScN allowed the first clear observation of the effect in the wurtzite crystal structure, resulting in a material with a previously unprecedented combination of very large coercive fields (2-5 MV/cm) and remnant polarizations $(70-110\\ \\mu \\mathrm{C}/\\text{cm}^{2})$. We obtained initial insight into the switching dynamics of AlScN, which suggests a domain wall motion limited process progressing from the electrode interfaces. Further, imprint was generally observed in AlScN films and can tentatively be traced to the alignment of charged defects with the internal and external polarization and field, respectively. Potentially crucial from the application point of view, ferroelectricity could be observed in films with thicknesses below 30 nm – as the coercive fields of AlScN were found to be largely independent of thickness between 600 nm and 27 nm.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"6 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Ferroelectricity in AlScN: Switching, Imprint and sub-150 nm Films\",\"authors\":\"S. Fichtner, F. Lofink, B. Wagner, Georg Schönweger, Tom-Niklas Kreutzer, A. Petraru, H. Kohlstedt\",\"doi\":\"10.1109/IFCS-ISAF41089.2020.9234883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of ferroelectricity in AlScN allowed the first clear observation of the effect in the wurtzite crystal structure, resulting in a material with a previously unprecedented combination of very large coercive fields (2-5 MV/cm) and remnant polarizations $(70-110\\\\ \\\\mu \\\\mathrm{C}/\\\\text{cm}^{2})$. We obtained initial insight into the switching dynamics of AlScN, which suggests a domain wall motion limited process progressing from the electrode interfaces. Further, imprint was generally observed in AlScN films and can tentatively be traced to the alignment of charged defects with the internal and external polarization and field, respectively. Potentially crucial from the application point of view, ferroelectricity could be observed in films with thicknesses below 30 nm – as the coercive fields of AlScN were found to be largely independent of thickness between 600 nm and 27 nm.\",\"PeriodicalId\":6872,\"journal\":{\"name\":\"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)\",\"volume\":\"6 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ferroelectricity in AlScN: Switching, Imprint and sub-150 nm Films
The discovery of ferroelectricity in AlScN allowed the first clear observation of the effect in the wurtzite crystal structure, resulting in a material with a previously unprecedented combination of very large coercive fields (2-5 MV/cm) and remnant polarizations $(70-110\ \mu \mathrm{C}/\text{cm}^{2})$. We obtained initial insight into the switching dynamics of AlScN, which suggests a domain wall motion limited process progressing from the electrode interfaces. Further, imprint was generally observed in AlScN films and can tentatively be traced to the alignment of charged defects with the internal and external polarization and field, respectively. Potentially crucial from the application point of view, ferroelectricity could be observed in films with thicknesses below 30 nm – as the coercive fields of AlScN were found to be largely independent of thickness between 600 nm and 27 nm.