监管指南1.99 Fluence衰减方法的比较

E. Jones
{"title":"监管指南1.99 Fluence衰减方法的比较","authors":"E. Jones","doi":"10.1520/JAI104028","DOIUrl":null,"url":null,"abstract":"U.S. Regulatory Guide 1.99 Revision 2 (U.S. Nuclear Regulatory Commission, 1988, “Radiation Embrittlement of Reactor Vessel Materials,” Regulatory Guide 1.99, Revision 2, Washington, D.C.) provides for the use of two substantially different methods for determining through-wall fluence in nuclear reactor pressure vessels. One method is a generic attenuation curve based on a simplistic exponential decay equation. Partly due to the simplicity of its application, the generic attenuation method is predominantly used for licensing calculations. However, it has a limitation in that at increasing distances away from the core beltline, it becomes increasingly less accurate because it cannot account for neutron streaming effects in the cavity region surrounding the pressure vessel. The other attenuation method is based on a displacement per atom (dpa) calculation specific to the reactor vessel structure. The dpa method provides a more accurate representation of fluence attenuation through the reactor pressure vessel (RPV) wall at all elevations of the pressure vessel because it does account for neutron streaming in the cavity region. A requirement for using the dpa method, however, is an accurate flux solution through the RPV wall. This requirement has limited the use of traditional transport methods, such as discrete ordinates, that are limited by their treatment of cavity regions (i.e., air) outside the pressure vessel wall. TransWare Enterprises, under the sponsorship of EPRI and BWRVIP, has developed an advanced three-dimensional transport methodology capable of producing fully converged flux solutions throughout the entire reactor system, including in the cavity region and primary shield structures. This methodology provides an accurate and reliable determination of through-wall fluence in boiling water reactor (BWR) and pressurized water reactor (PWR) pressure vessels, thus allowing the dpa method to be implemented with high reliability. Using this advanced 3-D methodology, this paper presents comparisons of the generic and dpa attenuation methods at critical locations in both BWR and PWR pressure vessel walls.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Regulatory Guide 1.99 Fluence Attenuation Methods\",\"authors\":\"E. Jones\",\"doi\":\"10.1520/JAI104028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"U.S. Regulatory Guide 1.99 Revision 2 (U.S. Nuclear Regulatory Commission, 1988, “Radiation Embrittlement of Reactor Vessel Materials,” Regulatory Guide 1.99, Revision 2, Washington, D.C.) provides for the use of two substantially different methods for determining through-wall fluence in nuclear reactor pressure vessels. One method is a generic attenuation curve based on a simplistic exponential decay equation. Partly due to the simplicity of its application, the generic attenuation method is predominantly used for licensing calculations. However, it has a limitation in that at increasing distances away from the core beltline, it becomes increasingly less accurate because it cannot account for neutron streaming effects in the cavity region surrounding the pressure vessel. The other attenuation method is based on a displacement per atom (dpa) calculation specific to the reactor vessel structure. The dpa method provides a more accurate representation of fluence attenuation through the reactor pressure vessel (RPV) wall at all elevations of the pressure vessel because it does account for neutron streaming in the cavity region. A requirement for using the dpa method, however, is an accurate flux solution through the RPV wall. This requirement has limited the use of traditional transport methods, such as discrete ordinates, that are limited by their treatment of cavity regions (i.e., air) outside the pressure vessel wall. TransWare Enterprises, under the sponsorship of EPRI and BWRVIP, has developed an advanced three-dimensional transport methodology capable of producing fully converged flux solutions throughout the entire reactor system, including in the cavity region and primary shield structures. This methodology provides an accurate and reliable determination of through-wall fluence in boiling water reactor (BWR) and pressurized water reactor (PWR) pressure vessels, thus allowing the dpa method to be implemented with high reliability. Using this advanced 3-D methodology, this paper presents comparisons of the generic and dpa attenuation methods at critical locations in both BWR and PWR pressure vessel walls.\",\"PeriodicalId\":15057,\"journal\":{\"name\":\"Journal of Astm International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astm International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/JAI104028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

美国监管指南1.99修订版2(美国核监管委员会,1988年,“反应堆容器材料的辐射脆化”,监管指南1.99修订版2,华盛顿特区)规定使用两种本质上不同的方法来确定核反应堆压力容器的穿壁影响。一种方法是基于简单指数衰减方程的通用衰减曲线。部分由于其应用的简单性,通用衰减法主要用于许可计算。然而,它有一个局限性,即随着距离堆芯腰线的增加,它的精度会越来越低,因为它不能解释压力容器周围腔区的中子流效应。另一种衰减方法是基于特定于反应堆容器结构的每原子位移(dpa)计算。由于dpa方法考虑了腔区中子流,因此可以更准确地表示在压力容器的所有高度上通过反应堆压力容器(RPV)壁的通量衰减。然而,使用dpa方法的一个要求是通过RPV壁的精确通量解。这一要求限制了传统运输方法(如离散坐标)的使用,这些方法受到压力容器壁外空腔区域(即空气)处理的限制。在EPRI和BWRVIP的赞助下,TransWare企业开发了一种先进的三维传输方法,能够在整个反应堆系统(包括腔区和主屏蔽结构)中产生完全聚合的通量解决方案。该方法能够准确、可靠地测定沸水反应堆(BWR)和压水堆(PWR)压力容器的通壁通量,从而使dpa方法能够高可靠性地实施。利用这种先进的三维方法,本文比较了沸水堆和压水堆压力容器壁关键位置的一般衰减方法和dpa衰减方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Regulatory Guide 1.99 Fluence Attenuation Methods
U.S. Regulatory Guide 1.99 Revision 2 (U.S. Nuclear Regulatory Commission, 1988, “Radiation Embrittlement of Reactor Vessel Materials,” Regulatory Guide 1.99, Revision 2, Washington, D.C.) provides for the use of two substantially different methods for determining through-wall fluence in nuclear reactor pressure vessels. One method is a generic attenuation curve based on a simplistic exponential decay equation. Partly due to the simplicity of its application, the generic attenuation method is predominantly used for licensing calculations. However, it has a limitation in that at increasing distances away from the core beltline, it becomes increasingly less accurate because it cannot account for neutron streaming effects in the cavity region surrounding the pressure vessel. The other attenuation method is based on a displacement per atom (dpa) calculation specific to the reactor vessel structure. The dpa method provides a more accurate representation of fluence attenuation through the reactor pressure vessel (RPV) wall at all elevations of the pressure vessel because it does account for neutron streaming in the cavity region. A requirement for using the dpa method, however, is an accurate flux solution through the RPV wall. This requirement has limited the use of traditional transport methods, such as discrete ordinates, that are limited by their treatment of cavity regions (i.e., air) outside the pressure vessel wall. TransWare Enterprises, under the sponsorship of EPRI and BWRVIP, has developed an advanced three-dimensional transport methodology capable of producing fully converged flux solutions throughout the entire reactor system, including in the cavity region and primary shield structures. This methodology provides an accurate and reliable determination of through-wall fluence in boiling water reactor (BWR) and pressurized water reactor (PWR) pressure vessels, thus allowing the dpa method to be implemented with high reliability. Using this advanced 3-D methodology, this paper presents comparisons of the generic and dpa attenuation methods at critical locations in both BWR and PWR pressure vessel walls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flame Retardant Emissions from Spray Polyurethane Foam Insulation Economic Impact of Improved Service-Life Prediction for Seams in Low-Slope EPDM Roofing The Economics of Residential Fire Sprinklers and the Potential Impact of Recent Code Changes Roller Profile Development for an Axially Loaded, Single Row Spherical Roller Bearing in an Oscillating Application Characterization of Adhesive Joints for Hybrid Steel-Glass Beams by Means of Simplified Small Scale Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1