{"title":"一种具有自适应谐振时序控制的5-115V效率增强同步LED驱动器","authors":"Zhidong Liu, Hoi Lee","doi":"10.1109/CICC.2015.7338387","DOIUrl":null,"url":null,"abstract":"A wide-input-range (5-115V) DC-DC based synchronous LED driver is presented in this paper. The proposed LED driver can automatically operate in the soft-switching mode to minimize the converter's switching loss in the HV condition. An adaptive resonate timing control (ARTC) is developed to generate optimal dead-time for establishing zero-voltage switching of both high- and low-side power FETs under different input and output voltages. Two high-speed HV body-diode-based zero-voltage detectors are also proposed to realize high-frequency soft switching. Implemented in a 0.5μm 120V CMOS process, the proposed LED driver can support up to 25 series-connected high-brightness LEDs. The LED driver can operate up to 1.6MHz and achieve a peak power efficiency of 94.4% in the soft-switching mode. Compared to the prior arts, the proposed LED driver is the first to demonstrate auto-configurable hard-and soft-switching capability by the ARTC to achieve high power efficiency and current accuracy over both widest ranges of the input voltage and the number of output LEDs.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 5–115V efficiency-enhanced synchronous LED driver with adaptive resonant timing control\",\"authors\":\"Zhidong Liu, Hoi Lee\",\"doi\":\"10.1109/CICC.2015.7338387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide-input-range (5-115V) DC-DC based synchronous LED driver is presented in this paper. The proposed LED driver can automatically operate in the soft-switching mode to minimize the converter's switching loss in the HV condition. An adaptive resonate timing control (ARTC) is developed to generate optimal dead-time for establishing zero-voltage switching of both high- and low-side power FETs under different input and output voltages. Two high-speed HV body-diode-based zero-voltage detectors are also proposed to realize high-frequency soft switching. Implemented in a 0.5μm 120V CMOS process, the proposed LED driver can support up to 25 series-connected high-brightness LEDs. The LED driver can operate up to 1.6MHz and achieve a peak power efficiency of 94.4% in the soft-switching mode. Compared to the prior arts, the proposed LED driver is the first to demonstrate auto-configurable hard-and soft-switching capability by the ARTC to achieve high power efficiency and current accuracy over both widest ranges of the input voltage and the number of output LEDs.\",\"PeriodicalId\":6665,\"journal\":{\"name\":\"2015 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"7 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2015.7338387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 5–115V efficiency-enhanced synchronous LED driver with adaptive resonant timing control
A wide-input-range (5-115V) DC-DC based synchronous LED driver is presented in this paper. The proposed LED driver can automatically operate in the soft-switching mode to minimize the converter's switching loss in the HV condition. An adaptive resonate timing control (ARTC) is developed to generate optimal dead-time for establishing zero-voltage switching of both high- and low-side power FETs under different input and output voltages. Two high-speed HV body-diode-based zero-voltage detectors are also proposed to realize high-frequency soft switching. Implemented in a 0.5μm 120V CMOS process, the proposed LED driver can support up to 25 series-connected high-brightness LEDs. The LED driver can operate up to 1.6MHz and achieve a peak power efficiency of 94.4% in the soft-switching mode. Compared to the prior arts, the proposed LED driver is the first to demonstrate auto-configurable hard-and soft-switching capability by the ARTC to achieve high power efficiency and current accuracy over both widest ranges of the input voltage and the number of output LEDs.