基于冲击试验的弹性波导脉冲成形声子材料

IF 1.9 4区 工程技术 Q2 ACOUSTICS Journal of Vibration and Acoustics-Transactions of the Asme Pub Date : 2022-02-07 DOI:10.1115/1.4053778
William Johnson, M. Leamy, W. Delima, M. Ruzzene
{"title":"基于冲击试验的弹性波导脉冲成形声子材料","authors":"William Johnson, M. Leamy, W. Delima, M. Ruzzene","doi":"10.1115/1.4053778","DOIUrl":null,"url":null,"abstract":"\n Mechanical shock events experienced by electronic systems can be reproduced in the laboratory using Hopkinson bar tests. In such tests a projectile strikes a rod, creating a pulse which then travels into the electronic system. The quality of these tests depends on the closeness of the shape of the incident pulse to a desired shape specified for each test. This paper introduces a new approach for controlling the shape of the incident pulse through the use of phononic material concepts, thereby improving the test procedure. Two dispersion-modifying concepts, phononic crystals and local resonators, are examined for their wave shaping capabilities in one-dimensional elastic waveguides. They are evaluated using a transfer matrix method to determine the output pulse shape in the time domain. Parametric studies show that no single parameter allows for precise-enough control to achieve the possible desired output pulse shapes. Instead, the parameters of an approximate, discrete model for a combined phononic crystal/locally resonant system are optimized together to achieve the desired pulse shape. A sensitivity analysis documents that the pulse shape is relatively insensitive to errors in the optimized parameter values. The optimized discrete model is then translated into a physical design, which when analyzed using the finite element method shows that desired pulse shapes are indeed produced.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phononic Materials for Pulse Shaping in Elastic Waveguides Motivated by Shock Testing\",\"authors\":\"William Johnson, M. Leamy, W. Delima, M. Ruzzene\",\"doi\":\"10.1115/1.4053778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mechanical shock events experienced by electronic systems can be reproduced in the laboratory using Hopkinson bar tests. In such tests a projectile strikes a rod, creating a pulse which then travels into the electronic system. The quality of these tests depends on the closeness of the shape of the incident pulse to a desired shape specified for each test. This paper introduces a new approach for controlling the shape of the incident pulse through the use of phononic material concepts, thereby improving the test procedure. Two dispersion-modifying concepts, phononic crystals and local resonators, are examined for their wave shaping capabilities in one-dimensional elastic waveguides. They are evaluated using a transfer matrix method to determine the output pulse shape in the time domain. Parametric studies show that no single parameter allows for precise-enough control to achieve the possible desired output pulse shapes. Instead, the parameters of an approximate, discrete model for a combined phononic crystal/locally resonant system are optimized together to achieve the desired pulse shape. A sensitivity analysis documents that the pulse shape is relatively insensitive to errors in the optimized parameter values. The optimized discrete model is then translated into a physical design, which when analyzed using the finite element method shows that desired pulse shapes are indeed produced.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053778\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053778","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

电子系统所经历的机械冲击事件可以在实验室中使用霍普金森杆试验再现。在这样的测试中,弹丸击中一根杆子,产生一个脉冲,然后进入电子系统。这些试验的质量取决于入射脉冲的形状与每次试验指定的所需形状的接近程度。本文介绍了一种利用声子材料概念来控制入射脉冲形状的新方法,从而改进了测试程序。两个色散修正的概念,声子晶体和局部谐振器,检查了他们的波整形能力在一维弹性波导。利用传递矩阵法对它们进行评估,以确定时域内的输出脉冲形状。参数研究表明,没有一个参数允许足够精确的控制,以达到可能期望的输出脉冲形状。相反,一个近似的参数,离散模型的组合声子晶体/局部谐振系统一起优化,以实现所需的脉冲形状。灵敏度分析表明,脉冲形状对优化参数值的误差相对不敏感。然后将优化的离散模型转化为物理设计,当使用有限元方法进行分析时,表明确实产生了所需的脉冲形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phononic Materials for Pulse Shaping in Elastic Waveguides Motivated by Shock Testing
Mechanical shock events experienced by electronic systems can be reproduced in the laboratory using Hopkinson bar tests. In such tests a projectile strikes a rod, creating a pulse which then travels into the electronic system. The quality of these tests depends on the closeness of the shape of the incident pulse to a desired shape specified for each test. This paper introduces a new approach for controlling the shape of the incident pulse through the use of phononic material concepts, thereby improving the test procedure. Two dispersion-modifying concepts, phononic crystals and local resonators, are examined for their wave shaping capabilities in one-dimensional elastic waveguides. They are evaluated using a transfer matrix method to determine the output pulse shape in the time domain. Parametric studies show that no single parameter allows for precise-enough control to achieve the possible desired output pulse shapes. Instead, the parameters of an approximate, discrete model for a combined phononic crystal/locally resonant system are optimized together to achieve the desired pulse shape. A sensitivity analysis documents that the pulse shape is relatively insensitive to errors in the optimized parameter values. The optimized discrete model is then translated into a physical design, which when analyzed using the finite element method shows that desired pulse shapes are indeed produced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
期刊最新文献
Bone conduction: A linear viscoelastic mixed lumped-continuum model for the human skin in the acoustic frequency range A Multiple-Burner Approach to Passive Control of Multiple Longitudinal Acoustic Instabilities in Combustors Widening the Band Gaps of Hourglass Lattice Truss Core Sandwich Structures for Broadband Vibration Suppression Material Extrusion on an Ultrasonic Air Bed for 3D Printing Nonlinear Energy Transfer of a Spar-Floater System using the Inerter Pendulum Vibration Absorber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1