P. Sethuramalingam, U. M, Jayant Jaishwin, Mylavarapu Nikhil
{"title":"基于TOPSIS和模糊专家系统的熔融沉积模型(FDM)的实验研究与预测建模","authors":"P. Sethuramalingam, U. M, Jayant Jaishwin, Mylavarapu Nikhil","doi":"10.15282/ijame.20.1.2023.03.0788","DOIUrl":null,"url":null,"abstract":"Fused deposition modeling (FDM) is a well-liked additive fabrication method used to manufacture prototypes and components in industries. The quality of the 3D printed component depends on the temperature profile between the layers of the printed components and the process parameters. The deviations in the quality of manufactured components can be established using tools of metrology, including Coordinate-Measuring Machine and Machine Vision. This research is to determine the effect of temperature on the aforementioned phenomenon by using collected data to build a predictive model. The leading factor effect intrigue is stressed for the correlative closeness coefficient (Cn*) and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS). The most favorable combinations of the experiment were obtained from the response diagram at a layer thickness of 0.3 mm, print speed of 80 mm/sec, and infill percentage of 20%. It is noted that the parameters have a contribution of 55.60%, 33.16%, and 0.15%, respectively. The majority of agreeable combinations of the investigations were acquired from the main factor effect response diagram, a layer thickness of 0.3 mm, printing FDM speed of 80 mm/sec, and an infill percentage of material is 20% for maximizing the temperature gradient and minimizing shrinkage and warpage. A fuzzy logic expert system was used to predict the shrinkage allowances precisely with less than 5% error.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Study and Predictive Modelling of Fused Deposition Modelling (FDM) Using TOPSIS and Fuzzy Logic Expert System\",\"authors\":\"P. Sethuramalingam, U. M, Jayant Jaishwin, Mylavarapu Nikhil\",\"doi\":\"10.15282/ijame.20.1.2023.03.0788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fused deposition modeling (FDM) is a well-liked additive fabrication method used to manufacture prototypes and components in industries. The quality of the 3D printed component depends on the temperature profile between the layers of the printed components and the process parameters. The deviations in the quality of manufactured components can be established using tools of metrology, including Coordinate-Measuring Machine and Machine Vision. This research is to determine the effect of temperature on the aforementioned phenomenon by using collected data to build a predictive model. The leading factor effect intrigue is stressed for the correlative closeness coefficient (Cn*) and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS). The most favorable combinations of the experiment were obtained from the response diagram at a layer thickness of 0.3 mm, print speed of 80 mm/sec, and infill percentage of 20%. It is noted that the parameters have a contribution of 55.60%, 33.16%, and 0.15%, respectively. The majority of agreeable combinations of the investigations were acquired from the main factor effect response diagram, a layer thickness of 0.3 mm, printing FDM speed of 80 mm/sec, and an infill percentage of material is 20% for maximizing the temperature gradient and minimizing shrinkage and warpage. A fuzzy logic expert system was used to predict the shrinkage allowances precisely with less than 5% error.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.1.2023.03.0788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.1.2023.03.0788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental Study and Predictive Modelling of Fused Deposition Modelling (FDM) Using TOPSIS and Fuzzy Logic Expert System
Fused deposition modeling (FDM) is a well-liked additive fabrication method used to manufacture prototypes and components in industries. The quality of the 3D printed component depends on the temperature profile between the layers of the printed components and the process parameters. The deviations in the quality of manufactured components can be established using tools of metrology, including Coordinate-Measuring Machine and Machine Vision. This research is to determine the effect of temperature on the aforementioned phenomenon by using collected data to build a predictive model. The leading factor effect intrigue is stressed for the correlative closeness coefficient (Cn*) and Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS). The most favorable combinations of the experiment were obtained from the response diagram at a layer thickness of 0.3 mm, print speed of 80 mm/sec, and infill percentage of 20%. It is noted that the parameters have a contribution of 55.60%, 33.16%, and 0.15%, respectively. The majority of agreeable combinations of the investigations were acquired from the main factor effect response diagram, a layer thickness of 0.3 mm, printing FDM speed of 80 mm/sec, and an infill percentage of material is 20% for maximizing the temperature gradient and minimizing shrinkage and warpage. A fuzzy logic expert system was used to predict the shrinkage allowances precisely with less than 5% error.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.