基于损失尺度平衡的多像素任务学习

Jae-Han Lee, Chulwoo Lee, Chang-Su Kim
{"title":"基于损失尺度平衡的多像素任务学习","authors":"Jae-Han Lee, Chulwoo Lee, Chang-Su Kim","doi":"10.1109/ICCV48922.2021.00506","DOIUrl":null,"url":null,"abstract":"We propose a novel loss weighting algorithm, called loss scale balancing (LSB), for multi-task learning (MTL) of pixelwise vision tasks. An MTL model is trained to estimate multiple pixelwise predictions using an overall loss, which is a linear combination of individual task losses. The proposed algorithm dynamically adjusts the linear weights to learn all tasks effectively. Instead of controlling the trend of each loss value directly, we balance the loss scale — the product of the loss value and its weight — periodically. In addition, by evaluating the difficulty of each task based on the previous loss record, the proposed algorithm focuses more on difficult tasks during training. Experimental results show that the proposed algorithm outperforms conventional weighting algorithms for MTL of various pixelwise tasks. Codes are available at https://github.com/jaehanlee-mcl/LSB-MTL.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"32 1","pages":"5087-5096"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning Multiple Pixelwise Tasks Based on Loss Scale Balancing\",\"authors\":\"Jae-Han Lee, Chulwoo Lee, Chang-Su Kim\",\"doi\":\"10.1109/ICCV48922.2021.00506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel loss weighting algorithm, called loss scale balancing (LSB), for multi-task learning (MTL) of pixelwise vision tasks. An MTL model is trained to estimate multiple pixelwise predictions using an overall loss, which is a linear combination of individual task losses. The proposed algorithm dynamically adjusts the linear weights to learn all tasks effectively. Instead of controlling the trend of each loss value directly, we balance the loss scale — the product of the loss value and its weight — periodically. In addition, by evaluating the difficulty of each task based on the previous loss record, the proposed algorithm focuses more on difficult tasks during training. Experimental results show that the proposed algorithm outperforms conventional weighting algorithms for MTL of various pixelwise tasks. Codes are available at https://github.com/jaehanlee-mcl/LSB-MTL.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"32 1\",\"pages\":\"5087-5096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.00506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对像素级视觉任务的多任务学习,提出了一种新的损失加权算法——损失尺度平衡(LSB)。MTL模型被训练成使用整体损失(单个任务损失的线性组合)来估计多个像素级预测。该算法动态调整线性权值,有效学习所有任务。我们不是直接控制每个损失值的趋势,而是周期性地平衡损失规模——损失值与其权重的乘积。此外,基于之前的损失记录对每个任务的难度进行评估,使算法更加关注训练过程中较难的任务。实验结果表明,对于各种像素级任务的MTL,该算法优于传统的加权算法。代码可在https://github.com/jaehanlee-mcl/LSB-MTL上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Multiple Pixelwise Tasks Based on Loss Scale Balancing
We propose a novel loss weighting algorithm, called loss scale balancing (LSB), for multi-task learning (MTL) of pixelwise vision tasks. An MTL model is trained to estimate multiple pixelwise predictions using an overall loss, which is a linear combination of individual task losses. The proposed algorithm dynamically adjusts the linear weights to learn all tasks effectively. Instead of controlling the trend of each loss value directly, we balance the loss scale — the product of the loss value and its weight — periodically. In addition, by evaluating the difficulty of each task based on the previous loss record, the proposed algorithm focuses more on difficult tasks during training. Experimental results show that the proposed algorithm outperforms conventional weighting algorithms for MTL of various pixelwise tasks. Codes are available at https://github.com/jaehanlee-mcl/LSB-MTL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1