隐写分析工具的假阴性研究:隐写检测

B. Aziz, Jeyong Jung
{"title":"隐写分析工具的假阴性研究:隐写检测","authors":"B. Aziz, Jeyong Jung","doi":"10.7287/peerj.preprints.27339v1","DOIUrl":null,"url":null,"abstract":"Steganography and Steganalysis in recent years have become an important area of research involving dierent applications. Steganography is the process of hiding secret data into any digital media without any signicant notable changes in a cover object, while steganalysis is the process of detecting hiding content in the cover object. In this study, we evaluated one of the modern automated steganalysis tools, Stegdetect, to study its false negative rates when analysing a bulk of images. In so doing, we used JPHide method to embed a randomly generated messages into 2000 JPEG images. The aim of this study is to help digital forensics analysts during their investigations by means of providing an idea of the false negative rates of Stegdetect. This study found that (1) the false negative rates depended largely on the tool's sensitivity values, (2) the tool had a high false negative rate between the sensitivity values from 0.1 to 3.4 and (3) the best sensitivity value for detection of JPHide method was 6.2. It is recommended that when analysing a huge bulk of images forensic analysts need to take into consideration sensitivity values to reduce the false negative rates of Stegdetect.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"9 1","pages":"e27339"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A false negative study of the steganalysis tool: Stegdetect\",\"authors\":\"B. Aziz, Jeyong Jung\",\"doi\":\"10.7287/peerj.preprints.27339v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steganography and Steganalysis in recent years have become an important area of research involving dierent applications. Steganography is the process of hiding secret data into any digital media without any signicant notable changes in a cover object, while steganalysis is the process of detecting hiding content in the cover object. In this study, we evaluated one of the modern automated steganalysis tools, Stegdetect, to study its false negative rates when analysing a bulk of images. In so doing, we used JPHide method to embed a randomly generated messages into 2000 JPEG images. The aim of this study is to help digital forensics analysts during their investigations by means of providing an idea of the false negative rates of Stegdetect. This study found that (1) the false negative rates depended largely on the tool's sensitivity values, (2) the tool had a high false negative rate between the sensitivity values from 0.1 to 3.4 and (3) the best sensitivity value for detection of JPHide method was 6.2. It is recommended that when analysing a huge bulk of images forensic analysts need to take into consideration sensitivity values to reduce the false negative rates of Stegdetect.\",\"PeriodicalId\":93040,\"journal\":{\"name\":\"PeerJ preprints\",\"volume\":\"9 1\",\"pages\":\"e27339\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ preprints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7287/peerj.preprints.27339v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/peerj.preprints.27339v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隐写和隐写分析近年来已成为一个重要的研究领域,涉及不同的应用领域。隐写(Steganography)是将秘密数据隐藏到任何数字媒体中,而掩蔽对象没有任何显著变化的过程,而隐写分析(steganalysis)是检测掩蔽对象中隐藏内容的过程。在本研究中,我们评估了现代自动隐写分析工具之一,隐写检测,以研究其在分析大量图像时的假阴性率。在此过程中,我们使用JPHide方法将随机生成的消息嵌入到2000张JPEG图像中。本研究的目的是通过提供Stegdetect的假阴性率的概念,帮助数字取证分析人员进行调查。本研究发现:(1)假阴性率在很大程度上取决于工具的灵敏度值,(2)工具在0.1 ~ 3.4的灵敏度值之间具有较高的假阴性率,(3)JPHide方法检测的最佳灵敏度值为6.2。建议在分析大量图像时,法医分析人员需要考虑灵敏度值,以降低Stegdetect的假阴性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A false negative study of the steganalysis tool: Stegdetect
Steganography and Steganalysis in recent years have become an important area of research involving dierent applications. Steganography is the process of hiding secret data into any digital media without any signicant notable changes in a cover object, while steganalysis is the process of detecting hiding content in the cover object. In this study, we evaluated one of the modern automated steganalysis tools, Stegdetect, to study its false negative rates when analysing a bulk of images. In so doing, we used JPHide method to embed a randomly generated messages into 2000 JPEG images. The aim of this study is to help digital forensics analysts during their investigations by means of providing an idea of the false negative rates of Stegdetect. This study found that (1) the false negative rates depended largely on the tool's sensitivity values, (2) the tool had a high false negative rate between the sensitivity values from 0.1 to 3.4 and (3) the best sensitivity value for detection of JPHide method was 6.2. It is recommended that when analysing a huge bulk of images forensic analysts need to take into consideration sensitivity values to reduce the false negative rates of Stegdetect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for designing compassionate and ethical artificial intelligence and artificial consciousness Time series event correlation with DTW and Hierarchical Clustering methods Securing ad hoc on-demand distance vector routing protocol against the black hole DoS attack in MANETs 12 Grand Challenges in Single-Cell Data Science Mice tracking using the YOLO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1