基于自适应神经网络模糊推理系统的最大功率点跟踪提高屋顶太阳能板效率

I. Made, Ari Nrartha, I. M. Ginarsa, A. B. Muljono, Sultan, Ida Ayu, Sri Adnyani, M. Bilad, M. Abid
{"title":"基于自适应神经网络模糊推理系统的最大功率点跟踪提高屋顶太阳能板效率","authors":"I. Made, Ari Nrartha, I. M. Ginarsa, A. B. Muljono, Sultan, Ida Ayu, Sri Adnyani, M. Bilad, M. Abid","doi":"10.3844/ajeassp.2023.1.11","DOIUrl":null,"url":null,"abstract":": Rooftop solar panels are a strategy for achieving Indonesia's renewable energy goals, but their non-linear characteristics make them difficult to control, especially in the face of extreme weather changes. An effective controller is needed to optimize the power output of solar panels. This study proposes a Maximum Power Point Tracking (MPPT) controller based on an Adaptive Neural network Fuzzy Inference System (ANFIS) to address this control problem. The capacity of the rooftop solar panels is 3,430-Watt peak (Wp) and they are connected to a 220-Volt (V) grid system. The system is designed, simulated","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Rooftop Solar Panels Efficiency using Maximum Power Point Tracking Based on an Adaptive Neural Network Fuzzy Inference System\",\"authors\":\"I. Made, Ari Nrartha, I. M. Ginarsa, A. B. Muljono, Sultan, Ida Ayu, Sri Adnyani, M. Bilad, M. Abid\",\"doi\":\"10.3844/ajeassp.2023.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Rooftop solar panels are a strategy for achieving Indonesia's renewable energy goals, but their non-linear characteristics make them difficult to control, especially in the face of extreme weather changes. An effective controller is needed to optimize the power output of solar panels. This study proposes a Maximum Power Point Tracking (MPPT) controller based on an Adaptive Neural network Fuzzy Inference System (ANFIS) to address this control problem. The capacity of the rooftop solar panels is 3,430-Watt peak (Wp) and they are connected to a 220-Volt (V) grid system. The system is designed, simulated\",\"PeriodicalId\":7425,\"journal\":{\"name\":\"American Journal of Engineering and Applied Sciences\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Engineering and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/ajeassp.2023.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajeassp.2023.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

屋顶太阳能电池板是实现印尼可再生能源目标的一项策略,但其非线性特性使其难以控制,特别是在面对极端天气变化的情况下。需要一个有效的控制器来优化太阳能电池板的输出功率。本文提出一种基于自适应神经网络模糊推理系统(ANFIS)的最大功率点跟踪(MPPT)控制器来解决这一控制问题。屋顶太阳能电池板的峰值容量为3430瓦(Wp),并连接到220伏(V)的电网系统。对系统进行了设计、仿真
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of Rooftop Solar Panels Efficiency using Maximum Power Point Tracking Based on an Adaptive Neural Network Fuzzy Inference System
: Rooftop solar panels are a strategy for achieving Indonesia's renewable energy goals, but their non-linear characteristics make them difficult to control, especially in the face of extreme weather changes. An effective controller is needed to optimize the power output of solar panels. This study proposes a Maximum Power Point Tracking (MPPT) controller based on an Adaptive Neural network Fuzzy Inference System (ANFIS) to address this control problem. The capacity of the rooftop solar panels is 3,430-Watt peak (Wp) and they are connected to a 220-Volt (V) grid system. The system is designed, simulated
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of Cyber-Physical Systems, Digital Twins and 3D Printing in Advanced Manufacturing: A Synergistic Approach Optoelectronic Characterisation of Silicon and CIGS Photovoltaic Solar Cells Identification of the Presence of the "Swollen Shoot" Disease in Endemic Areas in Côte d'Ivoire Via Convolutional Neural Networks Bi-Stable Vibration Power Generation System Using Electromagnetic Motor and Efficiency Improvement by Stochastic Resonance A Classical Design Approach of Cascaded Controllers for a Traction Elevator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1