{"title":"你是怎么做的?基于社会语境的照片职业识别","authors":"Ming Shao, Liangyue Li, Y. Fu","doi":"10.1109/ICCV.2013.451","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of recognizing occupations of multiple people with arbitrary poses in a photo. Previous work utilizing single person's nearly frontal clothing information and fore/background context preliminarily proves that occupation recognition is computationally feasible in computer vision. However, in practice, multiple people with arbitrary poses are common in a photo, and recognizing their occupations is even more challenging. We argue that with appropriately built visual attributes, co-occurrence, and spatial configuration model that is learned through structure SVM, we can recognize multiple people's occupations in a photo simultaneously. To evaluate our method's performance, we conduct extensive experiments on a new well-labeled occupation database with 14 representative occupations and over 7K images. Results on this database validate our method's effectiveness and show that occupation recognition is solvable in a more general case.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"159 1","pages":"3631-3638"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"What Do You Do? Occupation Recognition in a Photo via Social Context\",\"authors\":\"Ming Shao, Liangyue Li, Y. Fu\",\"doi\":\"10.1109/ICCV.2013.451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the problem of recognizing occupations of multiple people with arbitrary poses in a photo. Previous work utilizing single person's nearly frontal clothing information and fore/background context preliminarily proves that occupation recognition is computationally feasible in computer vision. However, in practice, multiple people with arbitrary poses are common in a photo, and recognizing their occupations is even more challenging. We argue that with appropriately built visual attributes, co-occurrence, and spatial configuration model that is learned through structure SVM, we can recognize multiple people's occupations in a photo simultaneously. To evaluate our method's performance, we conduct extensive experiments on a new well-labeled occupation database with 14 representative occupations and over 7K images. Results on this database validate our method's effectiveness and show that occupation recognition is solvable in a more general case.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"159 1\",\"pages\":\"3631-3638\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What Do You Do? Occupation Recognition in a Photo via Social Context
In this paper, we investigate the problem of recognizing occupations of multiple people with arbitrary poses in a photo. Previous work utilizing single person's nearly frontal clothing information and fore/background context preliminarily proves that occupation recognition is computationally feasible in computer vision. However, in practice, multiple people with arbitrary poses are common in a photo, and recognizing their occupations is even more challenging. We argue that with appropriately built visual attributes, co-occurrence, and spatial configuration model that is learned through structure SVM, we can recognize multiple people's occupations in a photo simultaneously. To evaluate our method's performance, we conduct extensive experiments on a new well-labeled occupation database with 14 representative occupations and over 7K images. Results on this database validate our method's effectiveness and show that occupation recognition is solvable in a more general case.