Xufeng Huang, Tingli Xie, Zhuo Wang, Lei Chen, Qi Zhou, Zhen Hu
{"title":"基于迁移学习的多保真点云神经网络增材制造熔池建模方法","authors":"Xufeng Huang, Tingli Xie, Zhuo Wang, Lei Chen, Qi Zhou, Zhen Hu","doi":"10.1115/1.4051749","DOIUrl":null,"url":null,"abstract":"\n Melt pool modeling is critical for model-based uncertainty quantification (UQ) and quality control in metallic additive manufacturing (AM). Finite element (FE) simulation for thermal modeling in metal AM, however, is tedious and time-consuming. This paper presents a multifidelity point-cloud neural network method (MF-PointNN) for surrogate modeling of melt pool based on FE simulation data. It merges the feature representations of the low-fidelity (LF) analytical model and high-fidelity (HF) FE simulation data through the theory of transfer learning (TL). A basic PointNN is first trained using LF data to construct a correlation between the inputs and thermal field of analytical models. Then, the basic PointNN is updated and fine-tuned using the small size of HF data to build the MF-PointNN. The trained MF-PointNN allows for efficient mapping from input variables and spatial positions to thermal histories, and thereby efficiently predicts the three-dimensional melt pool. Results of melt pool modeling of electron beam additive manufacturing (EBAM) of Ti-6Al-4V under uncertainty demonstrate the efficacy of the proposed approach.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing\",\"authors\":\"Xufeng Huang, Tingli Xie, Zhuo Wang, Lei Chen, Qi Zhou, Zhen Hu\",\"doi\":\"10.1115/1.4051749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Melt pool modeling is critical for model-based uncertainty quantification (UQ) and quality control in metallic additive manufacturing (AM). Finite element (FE) simulation for thermal modeling in metal AM, however, is tedious and time-consuming. This paper presents a multifidelity point-cloud neural network method (MF-PointNN) for surrogate modeling of melt pool based on FE simulation data. It merges the feature representations of the low-fidelity (LF) analytical model and high-fidelity (HF) FE simulation data through the theory of transfer learning (TL). A basic PointNN is first trained using LF data to construct a correlation between the inputs and thermal field of analytical models. Then, the basic PointNN is updated and fine-tuned using the small size of HF data to build the MF-PointNN. The trained MF-PointNN allows for efficient mapping from input variables and spatial positions to thermal histories, and thereby efficiently predicts the three-dimensional melt pool. Results of melt pool modeling of electron beam additive manufacturing (EBAM) of Ti-6Al-4V under uncertainty demonstrate the efficacy of the proposed approach.\",\"PeriodicalId\":44694,\"journal\":{\"name\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing
Melt pool modeling is critical for model-based uncertainty quantification (UQ) and quality control in metallic additive manufacturing (AM). Finite element (FE) simulation for thermal modeling in metal AM, however, is tedious and time-consuming. This paper presents a multifidelity point-cloud neural network method (MF-PointNN) for surrogate modeling of melt pool based on FE simulation data. It merges the feature representations of the low-fidelity (LF) analytical model and high-fidelity (HF) FE simulation data through the theory of transfer learning (TL). A basic PointNN is first trained using LF data to construct a correlation between the inputs and thermal field of analytical models. Then, the basic PointNN is updated and fine-tuned using the small size of HF data to build the MF-PointNN. The trained MF-PointNN allows for efficient mapping from input variables and spatial positions to thermal histories, and thereby efficiently predicts the three-dimensional melt pool. Results of melt pool modeling of electron beam additive manufacturing (EBAM) of Ti-6Al-4V under uncertainty demonstrate the efficacy of the proposed approach.