Chenxi Pu, Zhuo Wang, Shulin Sun, Lei Zhou, Qiong He
{"title":"基于多层超表面的透射角复用元偏振器","authors":"Chenxi Pu, Zhuo Wang, Shulin Sun, Lei Zhou, Qiong He","doi":"10.3788/col202321.023603","DOIUrl":null,"url":null,"abstract":"Metasurfaces have exhibited great capabilities to control electromagnetic waves, and many multifunctional metasurfaces were recently proposed. However, although angle-multiplexed meta-devices were successfully realized in reflection geometries, their transmission-mode counterparts are difficult to achieve due to the additional requirements. Here, we design and fabricate a transmissive angle-multiplexed meta-polarizer in the microwave regime based on a multilayer metasurface. Coupled-mode-theory analyses reveal that the device exhibits distinct angle-dependent transmissive responses under exci-tations with different polarizations, and such differences are further enhanced by multiple scatterings inside the device. Microwave experimental results are in good agreement with numerical simulations and theoretical analyses. dispersions of Fabry – Perot (FP) resonance modes of different polarizations supported by the system. Excellent agreement among microwave experiments, numerical simulations, and theoretical analyses validates our design strategy. Our findings open up a new way to design transmissive angle-multiplexed meta-devices, which may yield many applications in practice.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmissive angle-multiplexed meta-polarizer based on a multilayer metasurface\",\"authors\":\"Chenxi Pu, Zhuo Wang, Shulin Sun, Lei Zhou, Qiong He\",\"doi\":\"10.3788/col202321.023603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metasurfaces have exhibited great capabilities to control electromagnetic waves, and many multifunctional metasurfaces were recently proposed. However, although angle-multiplexed meta-devices were successfully realized in reflection geometries, their transmission-mode counterparts are difficult to achieve due to the additional requirements. Here, we design and fabricate a transmissive angle-multiplexed meta-polarizer in the microwave regime based on a multilayer metasurface. Coupled-mode-theory analyses reveal that the device exhibits distinct angle-dependent transmissive responses under exci-tations with different polarizations, and such differences are further enhanced by multiple scatterings inside the device. Microwave experimental results are in good agreement with numerical simulations and theoretical analyses. dispersions of Fabry – Perot (FP) resonance modes of different polarizations supported by the system. Excellent agreement among microwave experiments, numerical simulations, and theoretical analyses validates our design strategy. Our findings open up a new way to design transmissive angle-multiplexed meta-devices, which may yield many applications in practice.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.023603\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/col202321.023603","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Transmissive angle-multiplexed meta-polarizer based on a multilayer metasurface
Metasurfaces have exhibited great capabilities to control electromagnetic waves, and many multifunctional metasurfaces were recently proposed. However, although angle-multiplexed meta-devices were successfully realized in reflection geometries, their transmission-mode counterparts are difficult to achieve due to the additional requirements. Here, we design and fabricate a transmissive angle-multiplexed meta-polarizer in the microwave regime based on a multilayer metasurface. Coupled-mode-theory analyses reveal that the device exhibits distinct angle-dependent transmissive responses under exci-tations with different polarizations, and such differences are further enhanced by multiple scatterings inside the device. Microwave experimental results are in good agreement with numerical simulations and theoretical analyses. dispersions of Fabry – Perot (FP) resonance modes of different polarizations supported by the system. Excellent agreement among microwave experiments, numerical simulations, and theoretical analyses validates our design strategy. Our findings open up a new way to design transmissive angle-multiplexed meta-devices, which may yield many applications in practice.
期刊介绍:
Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc.
COL is distinguished by its short review period (~30 days) and publication period (~100 days).
With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.