M. A. Semsarzadeh, Arezoo Sh Dadkhah, A. Sabzevari
{"title":"由聚环氧苯-聚异氰酸己酯液晶嵌段共聚物制备的高性能聚合物颗粒家族:合成及性能研究","authors":"M. A. Semsarzadeh, Arezoo Sh Dadkhah, A. Sabzevari","doi":"10.1177/09673911221102287","DOIUrl":null,"url":null,"abstract":"The poly (phenylene oxide)-block-poly (hexyl isocyanate) copolymers (PPO-b-PHIC)s were synthesized in various ratios of blocks using the organotitanium coordination method at room temperature. The copolymer particles were prepared by precipitation of concentrated solution of the copolymers in non-solvent under stirring. The synthesized copolymers and their particles were characterized by 1H and 13C nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), polarized optical microscope (POM), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effect of block ratio on the anisotropic-isotropic transition and liquid crystal texture of copolymers as a function of temperature and concentration of the solution was investigated. The polymeric particles tend to be aligned along the fibrillar direction by increasing the block ratio of amide in the copolymer.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-performance family of polymeric particles prepared from poly(phenylene oxide)-poly(hexyl isocyanate) liquid crystal block copolymer: synthesis and properties study\",\"authors\":\"M. A. Semsarzadeh, Arezoo Sh Dadkhah, A. Sabzevari\",\"doi\":\"10.1177/09673911221102287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The poly (phenylene oxide)-block-poly (hexyl isocyanate) copolymers (PPO-b-PHIC)s were synthesized in various ratios of blocks using the organotitanium coordination method at room temperature. The copolymer particles were prepared by precipitation of concentrated solution of the copolymers in non-solvent under stirring. The synthesized copolymers and their particles were characterized by 1H and 13C nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), polarized optical microscope (POM), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effect of block ratio on the anisotropic-isotropic transition and liquid crystal texture of copolymers as a function of temperature and concentration of the solution was investigated. The polymeric particles tend to be aligned along the fibrillar direction by increasing the block ratio of amide in the copolymer.\",\"PeriodicalId\":20417,\"journal\":{\"name\":\"Polymers and Polymer Composites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers and Polymer Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09673911221102287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911221102287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-performance family of polymeric particles prepared from poly(phenylene oxide)-poly(hexyl isocyanate) liquid crystal block copolymer: synthesis and properties study
The poly (phenylene oxide)-block-poly (hexyl isocyanate) copolymers (PPO-b-PHIC)s were synthesized in various ratios of blocks using the organotitanium coordination method at room temperature. The copolymer particles were prepared by precipitation of concentrated solution of the copolymers in non-solvent under stirring. The synthesized copolymers and their particles were characterized by 1H and 13C nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), polarized optical microscope (POM), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effect of block ratio on the anisotropic-isotropic transition and liquid crystal texture of copolymers as a function of temperature and concentration of the solution was investigated. The polymeric particles tend to be aligned along the fibrillar direction by increasing the block ratio of amide in the copolymer.