基于层次聚类的RBAC系统中用户授权查询问题的有效解决

K. R. Rao, Aditya Kolpe, Tribikram Pradhan, B. B. Zarpelão
{"title":"基于层次聚类的RBAC系统中用户授权查询问题的有效解决","authors":"K. R. Rao, Aditya Kolpe, Tribikram Pradhan, B. B. Zarpelão","doi":"10.13052/jcsm2245-1439.1142","DOIUrl":null,"url":null,"abstract":" Role Based Access Control (RBAC) systems face an essential issue related to systematic handling of users’ access requests known as the User Authentication Query (UAQ) Problem. In this paper, we show that the UAQ problem can be resolved using Unsupervised machine learning following the guaranteed access request and Dynamic Separation of Duty relations. The use of Agglomerative Hierarchical Clustering not only improves efficiency but also avoids disordered merging of existing roles to create new ones and steers clear of duplication. With a time complexity of  O(n^3), the algorithm proves to be one of the fastest and promising models in state-of-the-art. The proposed model has been compared with the existing models and experimentally evaluated.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"35 1","pages":"531-548"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Solution to User Authorization Query Problem in RBAC Systems Using Hierarchical Clustering\",\"authors\":\"K. R. Rao, Aditya Kolpe, Tribikram Pradhan, B. B. Zarpelão\",\"doi\":\"10.13052/jcsm2245-1439.1142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Role Based Access Control (RBAC) systems face an essential issue related to systematic handling of users’ access requests known as the User Authentication Query (UAQ) Problem. In this paper, we show that the UAQ problem can be resolved using Unsupervised machine learning following the guaranteed access request and Dynamic Separation of Duty relations. The use of Agglomerative Hierarchical Clustering not only improves efficiency but also avoids disordered merging of existing roles to create new ones and steers clear of duplication. With a time complexity of  O(n^3), the algorithm proves to be one of the fastest and promising models in state-of-the-art. The proposed model has been compared with the existing models and experimentally evaluated.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\"35 1\",\"pages\":\"531-548\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jcsm2245-1439.1142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

基于角色的访问控制(RBAC)系统面临着一个与用户访问请求的系统处理相关的基本问题,即用户身份验证查询(UAQ)问题。在本文中,我们证明了在保证访问请求和动态职责分离关系下,使用无监督机器学习可以解决UAQ问题。使用聚合层次聚类不仅提高了效率,而且避免了现有角色的无序合并以创建新角色,并避免了重复。该算法的时间复杂度为0 (n^3),是目前最快速、最有前途的模型之一。将该模型与现有模型进行了比较,并进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Solution to User Authorization Query Problem in RBAC Systems Using Hierarchical Clustering
 Role Based Access Control (RBAC) systems face an essential issue related to systematic handling of users’ access requests known as the User Authentication Query (UAQ) Problem. In this paper, we show that the UAQ problem can be resolved using Unsupervised machine learning following the guaranteed access request and Dynamic Separation of Duty relations. The use of Agglomerative Hierarchical Clustering not only improves efficiency but also avoids disordered merging of existing roles to create new ones and steers clear of duplication. With a time complexity of  O(n^3), the algorithm proves to be one of the fastest and promising models in state-of-the-art. The proposed model has been compared with the existing models and experimentally evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
期刊最新文献
Network Malware Detection Using Deep Learning Network Analysis An Efficient Intrusion Detection and Prevention System for DDOS Attack in WSN Using SS-LSACNN and TCSLR Update Algorithm of Secure Computer Database Based on Deep Belief Network Malware Cyber Threat Intelligence System for Internet of Things (IoT) Using Machine Learning Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1