{"title":"DICOM体积图像分析的高效计算机辅助诊断系统","authors":"Qoseen Zahra, M. Malik, Naila Batool","doi":"10.22581/muet1982.1903.24","DOIUrl":null,"url":null,"abstract":"Medical images are an important source of diagnosis. The brain of human analysis is now an advanced field of research for computer scientists and biomedical physicians. Services provided by the healthcare units usually vary, the quality of treatment provided in the urban and rural generally not same. Unavailability of medical equipment and services can have serious consequences in patient disease diagnosis and treatment. In this context, we developed. MRI (Magnetic Resonance Imaging) based CAD (Computer Aided Diagnosis) system which takes MRI as input and detects abnormal tissues (Tumors). MRI is the safe and well reputed imaging methodology for prediction of tumors. MRI modality assists the medical team in diagnosis and proper treatment plan (Medication/Surgery) of different types of abnormalities in the soft tissues of the human body. This paper proposes a framework for brain cancer detection and classification. The tumor is segmented using a semi-automatic segmentation algorithm in which the threshold values selection for head and cancer regions are premeditated automatically. Segmented tumors are further sectioned into malignant and benign using SVM (Support Vector Machine) classifier. Detailed experimental work indicates that our proposed CAD system achieves higher accuracy for the analysis of brain MRI analysis.","PeriodicalId":17719,"journal":{"name":"July 2019","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Efficient Computer-Aided Diagnosis System for the Analysis of DICOM Volumetric Images\",\"authors\":\"Qoseen Zahra, M. Malik, Naila Batool\",\"doi\":\"10.22581/muet1982.1903.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical images are an important source of diagnosis. The brain of human analysis is now an advanced field of research for computer scientists and biomedical physicians. Services provided by the healthcare units usually vary, the quality of treatment provided in the urban and rural generally not same. Unavailability of medical equipment and services can have serious consequences in patient disease diagnosis and treatment. In this context, we developed. MRI (Magnetic Resonance Imaging) based CAD (Computer Aided Diagnosis) system which takes MRI as input and detects abnormal tissues (Tumors). MRI is the safe and well reputed imaging methodology for prediction of tumors. MRI modality assists the medical team in diagnosis and proper treatment plan (Medication/Surgery) of different types of abnormalities in the soft tissues of the human body. This paper proposes a framework for brain cancer detection and classification. The tumor is segmented using a semi-automatic segmentation algorithm in which the threshold values selection for head and cancer regions are premeditated automatically. Segmented tumors are further sectioned into malignant and benign using SVM (Support Vector Machine) classifier. Detailed experimental work indicates that our proposed CAD system achieves higher accuracy for the analysis of brain MRI analysis.\",\"PeriodicalId\":17719,\"journal\":{\"name\":\"July 2019\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"July 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22581/muet1982.1903.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"July 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.1903.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Computer-Aided Diagnosis System for the Analysis of DICOM Volumetric Images
Medical images are an important source of diagnosis. The brain of human analysis is now an advanced field of research for computer scientists and biomedical physicians. Services provided by the healthcare units usually vary, the quality of treatment provided in the urban and rural generally not same. Unavailability of medical equipment and services can have serious consequences in patient disease diagnosis and treatment. In this context, we developed. MRI (Magnetic Resonance Imaging) based CAD (Computer Aided Diagnosis) system which takes MRI as input and detects abnormal tissues (Tumors). MRI is the safe and well reputed imaging methodology for prediction of tumors. MRI modality assists the medical team in diagnosis and proper treatment plan (Medication/Surgery) of different types of abnormalities in the soft tissues of the human body. This paper proposes a framework for brain cancer detection and classification. The tumor is segmented using a semi-automatic segmentation algorithm in which the threshold values selection for head and cancer regions are premeditated automatically. Segmented tumors are further sectioned into malignant and benign using SVM (Support Vector Machine) classifier. Detailed experimental work indicates that our proposed CAD system achieves higher accuracy for the analysis of brain MRI analysis.